Skip to main content
×
×
Home

Phase-Field Models for Multi-Component Fluid Flows

  • Junseok Kim (a1)
Abstract
Abstract

In this paper, we review the recent development of phase-field models and their numerical methods for multi-component fluid flows with interfacial phenomena. The models consist of a Navier-Stokes system coupled with a multi-component Cahn-Hilliard system through a phase-field dependent surface tension force, variable density and viscosity, and the advection term. The classical infinitely thin boundary of separation between two immiscible fluids is replaced by a transition region of a small but finite width, across which the composition of the mixture changes continuously. A constant level set of the phase-field is used to capture the interface between two immiscible fluids. Phase-field methods are capable of computing topological changes such as splitting and merging, and thus have been applied successfully to multi-component fluid flows involving large interface deformations. Practical applications are provided to illustrate the usefulness of using a phase-field method. Computational results of various experiments show the accuracy and effectiveness of phase-field models.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Phase-Field Models for Multi-Component Fluid Flows
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Phase-Field Models for Multi-Component Fluid Flows
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Phase-Field Models for Multi-Component Fluid Flows
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author.Email:cfdkim@korea.ac.kr
References
Hide All
[1]Acar R., Simulation of interface dynamics: a diffuse-interface model, Visual Comput., 25 (2009), 101115.
[2]Almgren A. S., Bell J. B., Colella P., Howell L. H. and Welcome M. L., A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations, J. Comput. Phys., 142 (1998), 146.
[3]Ames W. F., Numerical Methods for Partial Differential Equations, Academic Press, San Diego, 1992.
[4]Anderson D. M., McFadden G. B. and Wheeler A. A., Diffuse-interface methods in fluid mechanics, Ann. Rev. Fluid Mech., 30 (1998), 139165.
[5]Badalassi V. E. and Banerjee S., Nano-structure computation with coupled momentum phase ordering kinetics models, Nucl. Eng. Des., 235(10-12) (2005), 2005–1107.
[6]Badalassi V. E., Ceniceros H. D. and Banerjee S., Computation of multiphase systems with phase field models, J. Comput. Phys., 190 (2003), 371397.
[7]Barrett J. W., Blowey J. F. and Garcke H., Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37 (1999), 286318.
[8]Barrett J. W., Blowey J. F. and Garcke H., On fully practical finite element approximations of degenerate Cahn-Hilliard systems, M2AN Math. Model. Numer. Anal., 35 (2002), 713748.
[9]Bell J., Collela P. and Glaz H., Second-order projection method for the incompressible Navier-Stokes equations, J. Comput. Phys., 85 (1989), 257283.
[10]Berger M. J. and Rigoustsos I., Technical Report NYU-501, New York University-CIMS, 1991.
[11]Blowey J. F., Copetti M. I. M. and Elliott C. M., Numerical analysis of a model for phase separation of a multi-component alloy, IMA J. Numer. Anal., 16 (1996), 111139.
[12]Borcia R. and Bestehorn M., Phase-field for Marangoni convection in liquid-gas systems with a deformable interface, Phys. Rev. E, 67 (2003), 066307.
[13]Boyer F., A theoretical and numerical model for the study of incompressible mixture flows, Comput. Fluids, 31(1) (2002), 2002–41.
[14]Boyer F. and Lapuerta C., Study of a three component Cahn-Hilliard flow model, M2AN, 40(4) (2006), 2006–653.
[15]Boyer F., Lapuerta C., Minjeaud S., Piar B. and Quintard M., Cahn-Hilliard/Navier-Stokes model for the simulation of three-phase flows, Transp. Porous Media, 2009.
[16]Brackbill J. U., Kothe D. B. and Zemach C., A continuum method for modeling surface tension, J. Comput. Phys., 100 (1992), 335354.
[17]Caffarelli L. A. and Muler N. E., An L bound for solutions of the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 133 (1995), 129144.
[18]Cahn J. W., Free energy of a nonuniform system II: thermodynamic basis, J. Chem. Phys., 30 (1959), 11211124.
[19]Cahn J. W., On spinodal decomposition, Acta Metall., 9 (1961), 795801.
[20]Cahn J. W. and Hilliard J. E., Free energy of a non-uniform system I: interfacial free energy, J. Chem. Phys., 28 (1958), 258267.
[21]Cahn J. W. and Hilliard J. E., Free energy of a nonuniform system III: nucleation in a two-component incompressible fluid, J. Chem. Phys., 31 (1959), 688699.
[22]Ceniceros H. D., Nos R. L. and Roma A. M., Three-dimensional, fully adaptive simulations of phase-field fluid models, J. Comput. Phys., 229 (2010), 61356155.
[23]Chacha M., Radeev S., Tadrist L. and Occelli R., Numerical treatment of the instability and breakupof a liquid capillary column in a bounded immiscible phase, Int. J. Multiphase Flow, 23 (1997), 377395.
[24]Chang Y. C., Hou T. Y., Merriman B. and Osher S., A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, J.Comput. Phys., 124 (1996), 449464.
[25]Chella R. and Viñals J., Mixing of a two-phase fluid by cavity flow, Phys. Rev. E, 53 (1996), 38323840.
[26]Chen L. Q. and Shen J., Applications of semi-implicit Fourier-spectral method to phase field equations, Comput. Phys. Commun., 108 (1998), 147158.
[27]Chorin A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2 (1967), 1226.
[28]Dehghan M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simul., 71 (2006), 1630.
[29]Ding H. and Spelt P. D. M., Wetting condition in diffuse interface simulations of contact line motion, Phys. Rev. E, 75 (2007), 046708.
[30]Ding H., Spelt P. D. M. and Shu C., Diffuse interface model for incompressible two-phase flows with large density ratios, J. Comput. Phys., 226 (2007), 20782095.
[31]Elliott C. M. and French D. A., Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math., 38 (1987), 97128.
[33]Eyre D. J., Computational and Mathematical Models of Microstructural Evolution, The Material Research Society, Warrendale, 1998.
[34]Fernandino M. and Dorao C. A., The least squares spectral element method for the Cahn-Hilliard equation, Appl. Math. Model., 35 (2011), 797806.
[35]Fife P. C., Models for phase separation and their mathematics, Euro. J. Diff. Eqns., 48 (2000), 126.
[36]Furihata D., A stable and conservative finite difference scheme for the Cahn-Hilliard Equation, Numer. Math., 87 (2001), 675699.
[37]Furihata D., Onda T. and Mori M., A finite difference scheme for the Cahn-Hilliard equation based on a Lyapunov functional, GAKUTO Int. Series Math. Sci. Appl., 2 (1993), 347358.
[38]Garcke H., Nestler B. and Stoth B., On anisotropic order parameter models for multi-phase systems and their sharp interface limits, Phys. D, 115 (1998), 87108.
[39]Gilbarg D. and Trudinger N. S., Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer-Verlag, Berlin, 2001.
[40]Glimm J., Grove J. W., Li X. L., Shyue K. M., Zhang Q. and Zeng Y., Three-dimensional front tracking, SIAM J. Sci. Comput., 19 (1998), 703727.
[41]Gomeza H. and Hughes T. J. R., Provably unconditionally stable, second-order time-accurate, mixed variational methods for phase-field models, J. Comput. Phys., 230 (2011), 53105327.
[42]Gueyffier D., Li J., Nadim A., Scardovelli R. and Zaleski S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152 (1999), 423456.
[43]Gurtin M. E., Polignone D. and Viñals J., Two-phase binary fluids and immiscible fluids described by an order parameter, Math. Models Meth. Appl. Sci., 6 (1996), 815831.
[44]Harlow F. H. and Welch J. E., The MAC method: a computing technique for solving viscous, incompressible, transient fluid flow problems involving free surface, Phys. Fluids, 8 (1965), 21822189.
[45]He Q., Glowinski R. and Wang X. P., A least-squares/finite element method for the numerical solution of the Navier-Stokes-Cahn-Hilliard system modeling the motion of the contact line, J. Comput. Phys., 230 (2011), 49915009.
[46]He Q. and Kasagi N., Phase-field simulation of small capillary-number two-phase flow in a microtube, Fluid Dyn. Res., 40(7-8) (2008), 2008–497.
[47]Jacqmin D., Calculation of two-phase Navier-Stokes flows using phase-field modeling, J. Comput. Phys., 155 (1999), 96127.
[48]Jacqmin D., Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402 (2000), 5788.
[49]Kan H. C., Shyy W., Udaykumar H. S., Vigneron P. and Tran-Son-Tay R., Effects of nucleus on leukocyte recovery, Ann. Biomed. Eng., 27 (1999), 648655.
[50]Kan H. C., Udaykumar H. S., Shyy W. and Tran-Son-Tay R., Hydrodynamics of a compound drop with application to leukocyte modeling, Phys. Fluids, 10 (1998), 760774.
[51]Karniadakis G. E., Israeli M. and Orszag S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97 (1991), 414443.
[52]Keestra B. J., Puyvelde P. C. J. V., Anderson P. D. and Meijer H. E. H., Diffuse interface modeling of the morphology and rheology of immiscible polymer blends, Phys. Fluids, 15(9) (2003), 2003–2567.
[53]Khatavkar V. V., Anderson P. D., Duineveld P. C. and Meijer H. H. E., Diffuse interface modeling of droplet impact on a pre-patterned solid surface, Macromol. Rapid. Commun., 26 (2005), 298303.
[54]Khatavkar V. V., Anderson P. D., Duineveld P. C. and Meijer H. H. E., Diffuse-interface modelling of droplet impact, J. Fluid Mech., 581 (2007), 97127.
[55]Khatavkar V. V., Anderson P. D. and Meijer H. H. E., Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model, J. Fluid Mech., 572 (2007), 367387.
[56]Kim J. S., A continuous surface tension force formulation for diffuse-interface models, J. Comput. Phys., 204(2) (2005), 2005–784.
[57]Kim J. S., A diffuse-interface model for axisymmetric immiscible two-phase flow, Appl. Math. Comput., 160 (2005), 589606.
[58]Kim J. S., A numerical method for the Cahn-Hilliard equation with a variable mobility, Commun. Nonlinear Sci. Numer. Simul., 12 (2007), 15601571.
[59]Kim J. S., Phase field computations for ternary fluid flows, Comput. Meth. Appl. Mech. Eng., 196 (2007), 47794788.
[60]Kim J. S., A generalized continuous surface tension force formulation for phase-field models for immiscible multi-component fluid flows, Comput. Meth. Appl. Mech. Eng., 198 (2009), 31053112.
[61]Kim J. S. and Bae H.-O., An unconditionally gradient stable adaptive mesh refinement for the Cahn-Hilliard equation, JKPS, 53(2) (2008), 2008–672.
[62]Kim J. S. and Kang K., A numerical method for the ternary Cahn-Hilliard system with a degenerate mobility, Appl. Numer. Math., 59 (2009), 10291042.
[63]Kim J. S., Kang K. K. and Lowengrub J. S., Conservative multigrid methods for Cahn-Hilliard fluids, J. Comput. Phys., 193 (2004), 511543.
[64]Kim J. S. and Lowengrub J. S., Phase field modeling and simulation of three-phase flows, Int. Free Bound., 7 (2005), 435466.
[65]Kim C.-H., Shin S.-H., Lee H. G. and Kim J. S., A phase-field model for the pinchoff of liquid-liquid jets, JKPS, 55 (2009), 14511460.
[66]Kiwata H., Instability of interfaces in phase-separating binary fluids at a finite Reynolds number, Phys. Fluids, 15 (2003), 24802485.
[67]Lee H. G. and Kim J. S., Accurate contact angle boundary conditions for the Cahn-Hilliard equations, Comput. Fluids, 44 (2011), 178186.
[68]Lee H. G., Kim K. M. and Kim J. S., On the long time simulation of the Rayleigh-Taylor instability, Int. J. Numer. Meth. Eng., 85 (2011), 16331647.
[69]Lee H. Y., Lowengrub J. S. and Goodman J., Modeling pinchoff and reconnection in a Hele-Shaw cell I: the models and their calibration, Phys. Fluids, 14(2) (2002), 2002–492.
[70]Lee H. Y., Lowengrub J. S. and Goodman J., Modeling pinchoff and reconnection in a Hele-Shaw cell II: analysis and simulation in the nonlinear regime, Phys. Fluids, 14(2) (2002), 2002–514.
[71]Li J. and Renardy Y., Numerical study of flows of two immiscible liquids at low Reynolds number, SIAM Rev., 42(3) (2000), 2000–417.
[72]Lighthill J., Waves in Fluids, Cambridge University Press, Cambridge, 1978.
[73]Liu C. and Shen J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179 (2003), 211228.
[74]Lowengrub J. S. and Truskinovsky L., Quasi-incompressible Cahn-Hilliard fluids and topo-logical transitions, Proc. R. Soc. Lond. A, 454 (1998), 26172654.
[75]Martin D. F., Colella P., Anghel M. and Alexander F. L., Adaptive mesh refinement for mul-tiscale nonequilibrium physics, Comput. Sci. Eng., 7 (2005), 2431.
[76]Milosevic I. N. and Longmire E. K., Pinch-off modes and satellite formation in liquid-liquid jet systems, Int. J. Multiphase Flow, 28(11) (2002), 2002–1853.
[77]Novick-Cohen A. and Segel L. A., Nonlinear aspects of the Cahn-Hilliard equation, Phys. D, 10 (1984), 277298.
[78]Osher S. and Fedkiw R. P., Level set methods: an overview and some recent results, J. Comput. Phys., 169 (2001), 463502.
[79]Osher S. and Fedkiw R. P., Level Set Methods and Dynamic Implicit Surfaces, Springer-Verlag, New York, 2002.
[80]Peskin C. S., The immersed boundary method, Acta Num., 11 (2002), 139.
[81]Peskin C. S. and McQueen D. M., Modeling prosthetic heart valves for numerical analysis of blood flow in the heart, J. Comput. Phys., 37 (1980), 113132.
[82]Porter D. A. and Easterling K. E., Phase Transformations in Metals and Alloys, van Nostrand Reinhold, New York, 1993.
[83]Press W. H., Teukolsky S. A., Vetterling W. T. and Flannery B. P., Numerical Recipes in C, Cambridge University Press, New York, 1993.
[84]Rowlinson J. S. and Widom B., Molecular Theory of Capillarity, Dover Publications, New York, 2003.
[85]Sethian J. A. and Smereka P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35 (2003), 341372.
[86]Shen J. and Yang X., An efficient moving mesh spectral method for the phase-field model of two-phase flows, J. Comput. Phys., 228(8) (2009), 2009–2978.
[87]Shen J. and Yang X., Energy stable schemes for Cahn-Hilliard phase-field model of two-phase incompressible flows, Chin. Ann. Math., 31B(5) (2010), 2010–743.
[88]Smith K. A., Solis F. J. and Chopp D. L., A projection method for motion of triple junctions by level sets, Int. Free Bound., 4 (2002), 263276.
[89]Starovoitov V. N., Model of the motion of a two-component liquid with allowance of capillary forces, J. Appl. Mech. Tech. Phys., 35 (1994), 891897.
[90]Sun Y. and Beckermann C., Diffuse interface modeling of two-phase flow based on averaging: mass and momentum equations, Phys. D, 198 (2004), 281308.
[91]Sussman M., Almgren A. S., Bell J. B., Colella P., Howell L. H. and Welcome M. L., An adaptive level set approach for incompressible two-phase flows, J. Comput. Phys., 148 (1999), 81124.
[92]Sussman M., Smereka P. and Osher S., A level set approach for computing solutions to in-compressible two-phase flow, J. Comput. Phys., 114 (1994), 146159.
[93]Teigen K. E., Song P., Lowengrub J. and Voigt A., A diffuse-interface method for two-phase flows with soluble surfactants, J. Comput. Phys., 230 (2011), 375393.
[94]Tomotika S., On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous fluid, Proc. Roy. Soc. A, 150 (1935), 322327.
[95]Trottenberg U., Oosterlee C. and Schüller A., MULTIGRID, Academic press, London, 2001.
[96]Udaykumar H. S., Kan H. C., Shyy W. and Tran-Son-Tay R., Multiphase dynamics in arbitrary geometries on fixed Cartesian grids, J. Comput. Phys., 137 (1997), 137366.
[97]Uzgoren E., Sin J. and Shyy W., Marker-based, 3-D adaptive cartesian grid method for multiphase flow around irregular geometries, Commun. Comput. Phys., 5(1) (2009), 2009–1.
[98]Verschueren M., Vosse F. N. Van De and Heijer H. E. H., Diffuse-interface modelling of ther-mocapillary flow instabilities in a Hele-Shaw cell, J. Fluid Mech., 434 (2001), 153166.
[99]Villanueva W., Sjodahl J., Stjernstrom M., Roeraade J. and Amberg G., Microdroplet deposition under a liquid medium, Lanmuir, 23 (2007), 11711177.
[100]Vollmayr-Lee B. P. and Rutenberg A. D., Fast and accurate coarsening simulation with an unconditionally stable time step, Phys. Rev. E, 68 (2003), 066703.
[101]Wise S., Kim J. S. and Lowengrub J. S., Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method, J. Comput. Phys., 226 (2007), 414446.
[102]Yang X., Feng J. J., Liu C. and Shen J., Numerical simulations of jet pinching-off and drop formation using an energetic variational phase-field method, J. Comput. Phys., 218 (2006), 417428.
[103]Young T., An essay on the cohesion of fluids, Trans. R. Soc. Lond., 95 (1805), 6587.
[104]Yue P. and Feng J. J., Wall energy relaxation in the Cahn-Hilliard model for moving contact lines, Phys. Fluids, 23 (2011), 012106.
[105]Yue P., Feng J. J., Liu C. and Shen J., A diffuse-interface method for simulating two-phase flows of complex fluids, J. Fluid Mech., 515 (2004), 293317.
[106]Yue P., Feng J. J., Liu C. and Shen J., Diffuse-interface simulations of drop coalescence and retractio in viscoelastic fluids, J. Non-Newtonian Fluid Mech., 129 (2005), 163176.
[107]Yue P., Zhou C. and Feng J. J., Spontaneous shrinkage of drops and mass conservation in phase-field simulations, J. Comput. Phys., 223 (2007), 19.
[108]Zhang S. and Wang M., A nonconforming finite element method for the Cahn-Hilliard equation, J. Comput. Phys., 229 (2010), 73617372.
[109]Zhu J., Chen L. Q., Shen J. and Tikare V., Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method, Phys. Rev. E, 60 (1999), 35643572.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 409 *
Loading metrics...

Abstract views

Total abstract views: 533 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.