Skip to main content Accessibility help
×
×
Home

A Preconditioned Implicit Free-Surface Capture Scheme for Large Density Ratio on Tetrahedral Grids

  • Xin Lv (a1), Qingping Zou (a2), D.E. Reeve (a3) and Yong Zhao (a4)
Abstract

We present a three dimensional preconditioned implicit free-surface capture scheme on tetrahedral grids. The current scheme improves our recently reported method [10] in several aspects. Specifically, we modified the original eigensystem by applying a preconditioning matrix so that the new eigensystem is virtually independent of density ratio, which is typically large for practical two-phase problems. Further, we replaced the explicit multi-stage Runge-Kutta method by a fully implicit Euler integration scheme for the Navier-Stokes (NS) solver and the Volume of Fluids (VOF) equation is now solved with a second order Crank-Nicolson implicit scheme to reduce the numerical diffusion effect. The preconditioned restarted Generalized Minimal RESidual method (GMRES) is then employed to solve the resulting linear system. The validation studies show that with these modifications, the method has improved stability and accuracy when dealing with large density ratio two-phase problems.

Copyright
Corresponding author
References
Hide All
[1]Kunza, R. F. and Boger, D. A.et al., A preconditioned Navier-Stokes method for two-phase Flows with application to cavitation prediction, Comput. Fluids, 29 (2000), 849875.
[2]Barth, T. J., Analysis of implicit local linearization techniques for upwind the TVD algorithms, Twenty-fifth Aerospace Sciences Meeting, January 1987, AIAA Paper 87-0595.
[3]Saad, Y. and Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7(3) (1986), 856869.
[4]Venkatakrishnan, V. and Mavriplis, D. J., Implicit solvers for unstructured meshes, J. Comput. Phys., 105 (1993), 8391.
[5]Whitaker, D. L., Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method, AIAA Paper 93-3337, 1993.
[6]Luo, H., Baum, J. D., Löhner, R. and Cabello, J., Implicit schemes and boundary conditions for compressible flows on unstructured meshes, AIAA Paper 94-0816, 1994.
[7]Barth, T. J. and Linton, S. W., An unstructured mesh Newton solver for compressible fluid flow and its parallel implementation, AIAA Paper 95-0221, 1995.
[8]Cuthill, E. H. and McKee, J. M., Reducing the bandwidth of sparse symmetric matrices, in: Proceedings of the 24th National Conference of the Association for Computing Machinery, 1969, 157172.
[9]Nejat, A. and Ollivier-Gooch, C., Effect of discretization order on preconditioning and convergence of a high-order unstructured Newton-GMRES solver for the Euler equations, J. Comput. Phys., 227 (2008), 23662386.
[10]Lv, X., Zou, Q. P., Zhao, Y. and Reeve, D. E., A novel coupled level set and volume of fluid method for sharp interface capturing on 3D tetrahedral grids, J. Comput. Phys., doi:10.1016/j.jcp.2009.12.005, 2009.
[11]Zhao, Y. and Tai, C. H., Higher-order characteristics-based methods for incompressible flow computation on unstructured grids, AIAA J., 39(7) (2001), 12801287.
[12]Zhao, Y., Tan, H. H. and Zhang, B. L., A high-resolution characteristics-based implicit dual time-stepping VOF method for free surface flow simulation on unstructured grids, J. Comput. Phys., 183 (2002), 233273.
[13]Price, W. G. and Chen, Y. G., A simulation of free surface waves for incompressible two-phase flows using a curvilinear level set formulation, Int. J. Numer. Methods Fluids, 51 (2006), 305– 330.
[14]Ubbink, O. and Issa, R. I., A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys., 153 (1999), 2650.
[15]Leonard, B. P., The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Meth. Appl. Mech. Eng., 88 (1991), 1774.
[16]Jameson, A. and Mavriplis, D. J., Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh, AIAA J., 24 (1986), 611.
[17]Liou, M.-S. and Leer, B. van, Choice of implicit and explicit operators for the upwind differencing method, 26th Aerospace Sciences Meeting, Reno, Nevada, Jan 11-14, 1988.
[18]Luo, H., Baum, J. D. and Löhner, R., A fast, matrix-free implicit method for compressible flows on unstructured meshes, J. Comput. Phys., 146 (1998), 664690.
[19]Nichols, B. D., Hirt, C. W. and Hotchkiss, R. S., SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries, Tech. Rep., LA-8355, Los Alamos National Laboratory, 1980.
[20]Hirt, C. W. and Nichols, B. D., Volume of fluid method for the dynamics of free boundaries, J. Comput. Phys., 39 (1981), 201225.
[21]Soulis, J. V., Computation of two-dimensional dam-breakflood flows, Int. J. Numer. Methods Fluids, 14 (1992), 631664.
[22]Martin, J. C. and Moyce, W. J., An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos. Trans. Roy. Soc. London, A244 (1952), 312324.
[23]Koshizuka, S., Tamako, H. and Oka, Y., A particle method for incompressible viscous flow with fluid fragmentation, Comput. Fluid Dyn. J., 4(1) (1995), 2946.
[24]Kleefsman, K. M. T., Fekken, G., Veldman, A. E. P., Iwanowski, B. and Buchner, B., A volume-of-fluid based simulation method for wave impact problems. J. Comput. Phys., 206 (2005), 363393.
[25]SPH European Research Interest Community website, http://wiki.manchester.ac.uk/spheric/index.php/test2.
[26]Caiden, R., Fedkiw, R. P. and Anderson, C., A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys., 166(1) (2001), 127.
[27]Knoll, D. A. and Keyes, D. E., Jacobian-free Newton-Krylov methods a survey of approaches and applications, J. Comput. Phys., 193 (2004), 357397.
[28]Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152(2) (1999), 457492.
[29]Liu, T. G., Khoo, B. C. and Wang, C. W., The ghost fluid method for compressible gas-water simulation, J. Comput. Phys., 204 (2005), 193221.
[30]Liu, X.-D., Fedkiw, R. P. and Kang, M., A boundary condition capturing method for Poisson’s equation on irregular domains, J. Comput. Phys., 160 (2000), 151178.
[31]Kang, M., Fedkiw, R. P., and Liu, X.-D., A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comput., 15 (2000), 323360.
[32]Wang, Z.-Y., Zou, Q.-P. and Reeve, D. E., Simulation of spilling breaking waves using a two phase flow CFD model, Comput. Fluids, doi:10.1016/j.compfluid.2009.06.006, 2009.
[33]Zhang, Y.-L., Zou, Q.-P. and Greaves, D. M., Numerical simulation of free-surface flow using the level-set method with global mass correction, Int. J. Numer. Methods Fluids, doi: 10.1002/fld.2090, 2009.
[34]Liu, D. M. and Lin, P. Z., A numerical study of three-dimensional liquid sloshing in tanks, J. Comput. Phys., 227(8) (2008), 39213939.
[35]Clift, R., Grace, J. R. and Weber, M. E., Bubbles, Drops and Particles, Academic Press: New York, 1978.
[36]Chen, L., Garimella, S. V., Reizes, J. A. and Leonardi, E., The development of a bubble rising in a viscous fluid, J. Fluid Mech., 387 (1999), 6196.
[37]Parolini, N., Computational Fluid Dynamics for Naval Engineering Problems, PhD Thesis, Number 3138, Ecole Polytechnique Federale de Lausanne (EPFL), 2004.
[38]Parolini, N. and Burman, E., A finite element level set method for viscous free-surface flows, Applied and Industrial Mathematics in Italy, Proceedings of SIMAI 2004, 417-427, World Scientific, 2005.
[39]Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, S. and Tobiska, L., Quantitative benchmark computations of two-dimensional bubble-dynamics, MOX-Report No. 23/2008, 2008.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed