Skip to main content
×
Home
    • Aa
    • Aa

PyCFTBoot: A Flexible Interface for the Conformal Bootstrap

  • Connor Behan (a1)
Abstract
Abstract

We introduce PyCFTBoot, a wrapper designed to reduce the barrier to entry in conformal bootstrap calculations that require semidefinite programming. Symengine and SDPB are used for the most intensive symbolic and numerical steps respectively. After reviewing the built-in algorithms for conformal blocks, we explain how to use the code through a number of examples that verify past results. As an application, we show that the multi-correlator bootstrap still appears to single out the Wilson-Fisher fixed points as special theories in dimensions between 3 and 4 despite the recent proof that they violate unitarity.

Copyright
Corresponding author
*Corresponding author. Email address: connor.behan@gmail.com (C. Behan)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] S. Ferrara , A. F. Grillo and R. Gatto , Tensor representations of conformal algebra and conformally covariant operator product expansion, Ann. Phys., 76 (1973), 161188.

[3] J. Maldacena , The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38 (1998), 11131133, arXiv:9711.200.

[5] S. Rychkov and A. Vichi , Universal constraints on conformal operator dimensions, Phys. Rev. D, 80(4) (2009), arXiv:0905.2211.

[6] F. Caracciolo and S. Rychkov , Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D, 81(8) (2010), arXiv:0912.2726.

[9] S. El-Showk , M. F. Paulos , D. Poland , S. Rychkov , D. Simmons-Duffin and A. Vichi , Solving the 3D Isingmodelwith the conformal bootstrap, Phys. Rev. D, 86(2) (2012), arXiv:1203.6064.

[11] S. El-Showk , M. F. Paulos , D. Poland , S. Rychkov , D. Simmons-Duffin and A. Vichi , Solving the 3D Ising model with the conformal bootstrap II: c-minimization and precise critical exponents, J. Stat. Phys., 157 (2014), 869914, arXiv:1403.4545.

[12] Y. Nakayama and T. Ohtsuki , Approaching conformal window of symmetric Landau-Ginzburg models from conformal bootstrap, Phys. Rev. D, 89(12) (2014), arXiv:1404.0489.

[14] Y. Nakayama and T. Ohtsuki , Bootstrapping phase transitions in QCD and frustrated spin systems, Phys. Rev. D, 91(2) (2015), arXiv:1407.6195.

[16] S.M. Chester , S. S. Pufu and R. Yacoby , Bootstrapping vector models in 4<d<6, Phys. Rev. D, 91(8) (2015), arXiv:1412.7746.

[19] C. Beem , L. Rastelli and B. C. van Rees , The superconformal bootstrap, Phys. Rev. Lett., 111 (2013), 071601, arXiv:1304.1803.

[28] C. Beem , M. Lemos , L. Rastelli and B. C. van Rees , The (2,0) superconformal bootstrap, Phys. Rev. D, 93(2) (2016), arXiv:1507.05637.

[35] S. van der Walt , S. C. Colbert and G. Varoquaux , The NumPy array: A structure for efficient numerical computation, Comput. Sci. Eng., 13 (2011), 2230.

[37] S. El-Showk , M. F. Paulos , D. Poland , S. Rychkov , D. Simmons-Duffin and A. Vichi , Conformal field theories in fractional dimensions, Phys. Rev. Lett., 112 (2014), 141601, arXiv:1309.5089.

[42] H. Osborn , Conformal blocks for arbitrary spins in two dimensions, Phys. Lett. B, 718 (2012), 169172, arXiv:1205.1941.

[50] F. A. Dolan and H. Osborn , Conformal four point functions and the operator product expansion, Nuclear Phys. B, 599 (2001), 459496, arXiv:hep-th/0011040.

[51] F. A. Dolan and H. Osborn , Conformal partial waves and the operator product expansion, Nuclear Phys. B, 678 (2004), 491507, arXiv:hep-th/0309180.

[53] M. Hogervorst and S. Rychkov , Radial coordinates for conformal blocks, Phys. Rev. D, 87(10) (2013), arXiv:1303.1111.

[57] S. El-Showk and M. F. Paulos , Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett., 111 (2013), 241601, arXiv:1211.2810.

[60] W. Gautschi , ORTHPOL–A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Transactions on Mathematical Software, 20 (1994), 2162, arXiv:math/9307212.

[61] F. A. Dolan and H. Osborn , Superconformal symmetry, correlation functions and the operator product expansion, Nuclear Phys. B, 629 (2002), 373, arXiv:hep-th/0112251.

[62] K. G. Wilson and M. E. Fisher , Critical exponents in 3.99 dimensions, Phys. Rev. Lett., 28(4) (1972), 240243.

[63] J. C. Le Guillo and J. Zinn-Justin , Accurate critical exponents for Ising like systems in non-integer dimensions, Journal de Physique, 48 (1987), 1924.

[64] M. Hogervorst , S. Rychkov and B. C. van Rees , Univarity violation at Wilson-Fisher fixed point in 4-epsilon dimensions, Phys. Rev. D, 93(12) (2016), arXiv:1512.00013.

[65] F. Gliozzi , Constraints on conformal field theories in diverse dimensions from the bootstrap mechanism, Phys. Rev. Lett., 111 (2013), 161602, arXiv:1307.3111.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 100 *
Loading metrics...

* Views captured on Cambridge Core between 3rd May 2017 - 19th September 2017. This data will be updated every 24 hours.