Skip to main content
×
Home

PyCFTBoot: A Flexible Interface for the Conformal Bootstrap

  • Connor Behan (a1)
Abstract
Abstract

We introduce PyCFTBoot, a wrapper designed to reduce the barrier to entry in conformal bootstrap calculations that require semidefinite programming. Symengine and SDPB are used for the most intensive symbolic and numerical steps respectively. After reviewing the built-in algorithms for conformal blocks, we explain how to use the code through a number of examples that verify past results. As an application, we show that the multi-correlator bootstrap still appears to single out the Wilson-Fisher fixed points as special theories in dimensions between 3 and 4 despite the recent proof that they violate unitarity.

Copyright
Corresponding author
*Corresponding author. Email address: connor.behan@gmail.com (C. Behan)
References
Hide All
[1] Ferrara S., Grillo A. F. and Gatto R., Tensor representations of conformal algebra and conformally covariant operator product expansion, Ann. Phys., 76 (1973), 161188.
[2] Polyakov A. M., Non-Hamiltonian approach to conformal quantum field theory, J. Exp. Theor. Phys., 66 (1974), 2342.
[3] Maldacena J., The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys., 38 (1998), 11131133, arXiv:9711.200.
[4] Rattazzi R., Rychkov S., Tonni E. and Vichi A., Bounding scalar operator dimensions in 4D CFT, J. High Energy Phys., 12(31) (2008), arXiv:0807.0004.
[5] Rychkov S. and Vichi A., Universal constraints on conformal operator dimensions, Phys. Rev. D, 80(4) (2009), arXiv:0905.2211.
[6] Caracciolo F. and Rychkov S., Rigorous limits on the interaction strength in quantum field theory, Phys. Rev. D, 81(8) (2010), arXiv:0912.2726.
[7] Rattazzil R., Rychkov S. and Vichi A., Central charge bounds in 4D conformal field theory, Phys. Rev. D, 83(4) (2011). arXiv:1009.2725.
[8] Rattazzil R., Rychkov S. and Vichi A., Bounds in 4D conformal field theories with global symmetry, J. Phys. A, 44(3) (2011), arXiv:1009.5985.
[9] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D. and Vichi A., Solving the 3D Isingmodelwith the conformal bootstrap, Phys. Rev. D, 86(2) (2012), arXiv:1203.6064.
[10] Kos F., Poland D. and Simmons-Duffin D., Bootstrapping the inline-graphic vector models, J. High Energy Phys., 6(91) (2014), arXiv:1307.6856.
[11] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D. and Vichi A., Solving the 3D Ising model with the conformal bootstrap II: c-minimization and precise critical exponents, J. Stat. Phys., 157 (2014), 869914, arXiv:1403.4545.
[12] Nakayama Y. and Ohtsuki T., Approaching conformal window of inline-graphic symmetric Landau-Ginzburg models from conformal bootstrap, Phys. Rev. D, 89(12) (2014), arXiv:1404.0489.
[13] Nakayama Y. and Ohtsuki T., Five dimensional inline-graphic symmetric CFTs fromconformal bootstrap, Phys. Lett. B, 734 (2014), 193197, arXiv:1404.5201.
[14] Nakayama Y. and Ohtsuki T., Bootstrapping phase transitions in QCD and frustrated spin systems, Phys. Rev. D, 91(2) (2015), arXiv:1407.6195.
[15] Bae J. B. and Rey S. J., Conformal bootstrap approach to inline-graphic fixed points in five dimensions, (2014), arXiv:1412.6549.
[16] Chester S.M., Pufu S. S. and Yacoby R., Bootstrapping inline-graphic vector models in 4<d<6, Phys. Rev. D, 91(8) (2015), arXiv:1412.7746.
[17] Poland D. and Simmons-Duffin D., Bounds on 4D conformal and superconformal field theories, J. High Energy Phys., 5(17) (2010), arXiv:1009.2087.
[18] Poland D., Simmons-Duffin D. and Vichi A., Carving out the space of 4D CFTs, J. High Energy Phys., 5(110) (2012), arXiv:1109.5176.
[19] Beem C., Rastelli L. and van Rees B. C., The inline-graphic superconformal bootstrap, Phys. Rev. Lett., 111 (2013), 071601, arXiv:1304.1803.
[20] Chester S. M., Lee J., Pufu S. S. and Yacoby R., The inline-graphic superconformal bootstrap in three dimensions, J. High Energy Phys., 9(143) (2014), arXiv:1406.4814.
[21] Beem C., Lemos M., Liendo P., Rastelli L. and van Rees B. C., The inline-graphic superconformal bootstrap, J. High Energy Phys., 3(183) (2016), arXiv:1412.7541.
[22] Paulos M. F., JuliBootS: A hands-on guide to the conformal bootstrap, (2014), arXiv:1412.4127.
[23] Simmons-Duffin D., A semidefinite program solver for the conformal bootstrap, J. High Energy Phys., 6(174) (2015), arXiv:1502.02033.
[24] Kos F., Poland D. and Simmons-Duffin D., Bootstrapping mixed correlators in the 3D Ising model, J. High Energy Phys., 11(109) (2014), arXiv:1406.4858.
[25] Swinarski D., Software for computing conformal block divisors on inline-graphic, (2014), http://faculty.fordham.edu/dswinarski/conformalblocks/ConformalBlocksAug2014.pdf.
[26] Kos F., Poland D., Simmons-Duffin D. and Vichi A., Bootstrapping the inline-graphic archipelago, J. High Energy Phys., 11(106) (2015), arXiv:1504.07997.
[27] Chester S. M., Giombi S., Iliesiu L. V., Klebanov I. R., Pufu S. S. and Yacoby R., Accidental symmetries and the conformal bootstrap, J. High Energy Phys., 1(110) (2016), arXiv:1507.04424.
[28] Beem C., Lemos M., Rastelli L. and van Rees B. C., The (2,0) superconformal bootstrap, Phys. Rev. D, 93(2) (2016), arXiv:1507.05637.
[29] Iliesiu L. V., Kos F., Poland D., Pufu S. S., Simmons-Duffin D. and Yacoby R., Bootstrapping 3D fermions, J. High Energy Phys., 3(120) (2016), arXiv:1508.00012.
[30] Poland D. and Stergiou A., Exploring the minimal 4D inline-graphic SCFT, J. High Energy Phys., 12(121) (2015), arXiv:1509.06368.
[31] Lemos M. and Liendo P., Bootstrapping inline-graphic chiral correlators, J. High Energy Phys., 1(25) (2016), arXiv:1510.03866.
[32] Lin Y., Shao S., Simmons-Duffin D., Wang Y. and Yin X., inline-graphic superconformal bootstrap of the K3 CFT, (2015), arXiv:1511.04065.
[33] Chester S.M., Iliesiu L. V., Pufu S. S. and Yacoby R., Bootstrapping inline-graphic vector models with four supercharges in 3≤d≤4, J. High Energy Phys., 5(103) (2016), arXiv:1511.07552.
[34] Chester S. M. and Pufu S. S., Towards bootstrapping QED3, J. High Energy Phys., 8(19) (2016), arXiv:1601.03476.
[35] van der Walt S., Colbert S. C. and Varoquaux G., The NumPy array: A structure for efficient numerical computation, Comput. Sci. Eng., 13 (2011), 2230.
[36] SymPy Development Team, SymPy: Python Library for Symbolic Mathematics, 2014, http://www.sympy.org.
[37] El-Showk S., Paulos M. F., Poland D., Rychkov S., Simmons-Duffin D. and Vichi A., Conformal field theories in fractional dimensions, Phys. Rev. Lett., 112 (2014), 141601, arXiv:1309.5089.
[38] Costa M. S., Penedones J., Poland D. and Rychkov S., Spinning conformal correlators, J. High Energy Phys., 11(71) (2011), arXiv:1107.3554.
[39] Costa M. S., Penedones J., Poland D. and Rychkov S., Spinning conformal blocks, J. High Energy Phys., 11(154) (2011), arXiv:1109.6321.
[40] Simmons-Duffin D., Projectors, shadows and conformal blocks, J. High Energy Phys., 4(146) (2014), arXiv:1204.3894.
[41] Siegel W., Embedding vs 6D twistors, (2012), arXiv:1204.5679.
[42] Osborn H., Conformal blocks for arbitrary spins in two dimensions, Phys. Lett. B, 718 (2012), 169172, arXiv:1205.1941.
[43] Dymarsky A., On the four-point function of the stress-energy tensors in a CFT, J. High Energy Phys., 10(75) (2015), arXiv:1311.4546.
[44] Costa M. S. and Hansen T., Conformal correlators of mixed-symmetry tensors, J. High Energy Phys., 2(151) (2015), arXiv:1411.7351.
[45] Elkhidir E.; Karateev D. and Serone M., General three-point functions in 4D CFT, J. High Energy Phys., 1(133) (2015), arXiv:1412.1796.
[46] Echeverri A. C., Elkhidir E., Karateev D. and Serone M., Deconstructing conformal blocks in 4D CFT, J. High Energy Phys., 8(101) (2015), arXiv:1505.03750.
[47] Rejon-Barrera F. and Robbins D., Scalar-vector bootstrap, J. High Energy Phys., 1(139) (2016), arXiv:1508.02676.
[48] Iliesiu L. V., Kos F., Poland D., Pufu S. S., Simmons-Duffins D. and Yacoby R., Fermion-scalar conformal blocks, J. High Energy Phys., 4(74) (2016), arXiv:1511.01497.
[49] Echeverri A. C., Elkhidir E., Karateev D. and Serone M., Seed conformal blocks in 4D CFT, J. High Energy Phys., 2(183) (2016), arXiv:1601.05325.
[50] Dolan F. A. and Osborn H., Conformal four point functions and the operator product expansion, Nuclear Phys. B, 599 (2001), 459496, arXiv:hep-th/0011040.
[51] Dolan F. A. and Osborn H., Conformal partial waves and the operator product expansion, Nuclear Phys. B, 678 (2004), 491507, arXiv:hep-th/0309180.
[52] Fitzpatrick A. L., Kaplan J. and Poland D., Conformal blocks in the large D limit, J. High Energy Phys., 8(107) (2013), arXiv:1305.0004.
[53] Hogervorst M. and Rychkov S., Radial coordinates for conformal blocks, Phys. Rev. D, 87(10) (2013), arXiv:1303.1111.
[54] Penedones J., Trevisani E. and Yamazaki M., Recursion relations for conformal blocks, J. High Energy Phys., 9(70) (2016), arXiv:1509.00428.
[55] Dijkgraaf R., Maldacena J., Moore G. and Verlinde E., A black hole Farey tail, (2000), arXiv:hep-th/0005003.
[56] Hogervorst M., Osborn H. and Rychkov S., Diagonal limit for conformal blocks in d dimensions, J. High Energy Phys., 8(14) (2013), arXiv:1305.1321.
[57] El-Showk S. and Paulos M. F., Bootstrapping conformal field theories with the extremal functional method, Phys. Rev. Lett., 111 (2013), 241601, arXiv:1211.2810.
[58] Dolan F. A. and Osborn H., Conformal Partial Waves: Further Mathematical Results, 2011, arXiv:1108.6194.
[59] Tyrtyshnikov E. E., A Brief Introduction to Numerical Analysis, Springer, 2012.
[60] Gautschi W., ORTHPOL–A package of routines for generating orthogonal polynomials and Gauss-type quadrature rules, ACM Transactions on Mathematical Software, 20 (1994), 2162, arXiv:math/9307212.
[61] Dolan F. A. and Osborn H., Superconformal symmetry, correlation functions and the operator product expansion, Nuclear Phys. B, 629 (2002), 373, arXiv:hep-th/0112251.
[62] Wilson K. G. and Fisher M. E., Critical exponents in 3.99 dimensions, Phys. Rev. Lett., 28(4) (1972), 240243.
[63] Le Guillo J. C. and Zinn-Justin J., Accurate critical exponents for Ising like systems in non-integer dimensions, Journal de Physique, 48 (1987), 1924.
[64] Hogervorst M., Rychkov S. and van Rees B. C., Univarity violation at Wilson-Fisher fixed point in 4-epsilon dimensions, Phys. Rev. D, 93(12) (2016), arXiv:1512.00013.
[65] Gliozzi F., Constraints on conformal field theories in diverse dimensions from the bootstrap mechanism, Phys. Rev. Lett., 111 (2013), 161602, arXiv:1307.3111.
[66] Golden J. and Paulos M. F., No unitary bootstrap for the fractal Ising model, J. High Energy Phys., 3(167) (2015), arXiv:1411.7932.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 145 *
Loading metrics...

* Views captured on Cambridge Core between 3rd May 2017 - 14th December 2017. This data will be updated every 24 hours.