Skip to main content Accessibility help
×
Home

Resonance Clustering in Wave Turbulent Regimes: Integrable Dynamics

  • Miguel D. Bustamante (a1) and Elena Kartashova (a2)

Abstract

Two fundamental facts of the modern wave turbulence theory are 1) existence of power energy spectra in k-space, and 2) existence of “gaps” in this spectra corresponding to the resonance clustering. Accordingly, three wave turbulent regimes are singled out: kinetic, described by wave kinetic equations and power energy spectra; discrete, characterized by resonance clustering; and mesoscopic, where both types of wave field time evolution coexist. In this review paper we present the results on integrable dynamics of resonance clusters appearing in discrete and mesoscopic wave turbulent regimes. Using a novel method based on the notion of dynamical invariant we show that some of the frequently met clusters are integrable in quadratures for arbitrary initial conditions and some others-only for particular initial conditions. We also identify chaotic behaviour in some cases. Physical implications of the results obtained are discussed.

Copyright

Corresponding author

Corresponding author.Email:elena.kartaschova@jku.at

References

Hide All
[1]Almonte, F., Jirsa, V. K., Large, E. W. and Tuller, B., Integration and segregation in auditory streaming, Phys. D, 212(1-2) (2005), 137–159.
[2]Arnold, V. I., Geometrical Methods in the Theory of Ordinary Differential Equations, Grundleheren der mathematischen Wissenschaften 250, A Series of Comprehensive Studies in Mathematics, New York Heidelberg Berlin, Springer-Verlag, 1983.
[3]Bolsino, A. V. and Fomenko, A. T., Integrable Hamiltonian Systems, Chapmann & Hall/CRC, 2004.
[4]Bustamante, M. D. and Kartashova, E., Dynamics of nonlinear resonances in Hamiltonian systems, Europhys. Lett., 85 (2009), 140041–14004-5.
[5]Bustamante, M. D. and Kartashova, E., Effect of the dynamical phases on the nonlinear amplitudes’ evolution, Europhys. Lett., 85 (2009), 340021–34002-6.
[6]Calogero, F., Why are certain nonlinear PDEs both widely applicapable and intergable? in book: Zakharov, V. E. (ed.), What is Integrability?, 1 (1991), 1–62, Springer Series in Nonlinear Dynamics, Springer Verlag.
[7]Chow, C. C., Henderson, D. and Segur, H., A generalized stability criterion for resonant triad interactions, Fluid Mech., 319 (1996), 67–76.
[8]Cretin, B. and Vernier, D., Quantized amplitudes in a nonlinear resonant electrical circuit, E-print: arxiv.org/abs/0801.1301 (2008).
[9]Constantin, A. and Kartashova, E., Effect of non-zero constant vorticity on the nonlinear resonances of capillary water waves, Europhys. Lett., 86 (2009), 290011–29001-6.
[10] A.Constantin, Kartashova, E. and Wahlén, E., Discrete wave turbulence of rotational capillary water waves, E-print: arXiv:1001.1497 (2010).
[11]Denissenko, P., Lukaschuk, S. and Nazarenko, S., Gravity surface wave turbulence in a laboratory flume, Phys. Rev. Lett., 99 (2007), 0145011–014501-4.
[12]Dubrovin, B. and Zhang, Y., Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, E-print: arXiv:math/0108160v1 (2001).
[13]Eissa, M., El-Ganainia, W. A. A. and Hameda, Y. S., Saturation, stability and resonance of non-linear systems, Phys. A: Stat. Mech. Appl., 356(2-4) (2005), 341–358.
[14]Evans, N. W., Superintegrability in classical mechanics, Phys. Rev. A, 41(10) (1990), 5666–5676.
[15]Ghil, M., Kondrashov, D., Lott, F. and Robertson, A. W., Intraseasonal oscillations in the mid-latitudes: observations, theory, and GCM results, in: Proc. ECMWF/CLIVAR Workshop on Simulations and prediction of Intra-Seasonal Variability, Reading, UK, 2004.
[16]Haenggi, P., Stochastic resonance in biology how noise can enhance detection of weak signals and help improve biological information processing, ChemPhysChem, 3(3) (2002), 285–290.
[17]Hasselmann, K., A criterion for nonlinear wave stability, Fluid Mech., 30 (1967), 737–739.
[18]Horvat, K., Miskovic, M. and Kuljaca, O., Avoidance of nonlinear resonance jump in turbine governor positioning system using fuzzy controller, Industrial Technology, 2 (2003), 881–885.
[19]Johnson, R. S., A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997.
[20]Kartashova, E. A., Piterbarg, L. I. and Reznik, G. M., Weakly nonlinear interactions between Rossby waves on a sphere, Oceanology, 29 (1990), 405–411.
[21]Kartashova, E., Partitioning of ensembles of weakly interacting dispersing waves in resonators into disjoint classes, Phys. D, 46 (1990), 43–56.
[22]Kartashova, E., Weakly nonlinear theory of finite-size effects in resonators, Phys. Rev. Lett., 72 (1994), 2013–2016.
[23]Kartashova, E., Wave resonances in systems with discrete spectra, in book: Nonlinear Waves and Weak Turbulence, ed., V. E., ZakharovSeries: Advances in the MathematicalSciences, AMS Transl., 2 (1998), 95–129.
[24]Kartashova, E., A model of laminated turbulence, JETP Lett., 83(7) (2006), 341–345.
[25]Kartashova, E., Fast computation algorithm for discrete resonances among gravity waves, Low Temp. Phys., 145(1-4) (2006), 286–295.
[26]Kartashova, E., Exact and quasi-resonances in discrete water-wave turbulence, Phys. Rev. Lett., 98(21) (2007), 2145021–214502-4.
[27]Kartashova, E., Discrete wave turbulence, Europhys. Lett., 87 (2009), 440011–44001-6.
[28]Kartashova, E., Nonlinear Resonance Analysis: Theory, Computation, Applications, Cambridge University Press, 2010.
[29]Kartashova, E. and Kartashov, A., Laminated wave turbulence: generic algorithms I, Int. J. Mod. Phys. C, 17(11) (2006), 1579–1596.
[30]Kartashova, E. and Kartashov, A., Laminated wave turbulence: generic algorithms II, Commun. Comput. Phys., 2(4) (2007), 783–794.
[31]Kartashova, E. and Kartashov, A., Laminated wave turbulence: generic algorithms III, Phys. A: Stat. Mech. Appl., 380 (2007), 6674.
[32]Kartashova, E. and L’vov, V. S., A model of intra-seasonal oscillations in the Earth atmosphere, Phys. Rev. Lett., 98(19) (2007), 1985011–198501-4.
[33]Kartashova, E. and L’vov, V. S., Cluster dynamics of planetary waves, Europhys. Lett., 83 (2008), 500121–50012-6.
[34]Kartashova, E. and Mayrhofer, G., Cluster formation in mesoscopic systems, Phys. A: Stat. Mech. Appl., 385 (2007), 527–542.
[35]Kartashova, E., Raab, C., Feurer, Ch., Mayrhofer, G. and Schreiner, W., Symbolic computations for nonlinear wave resonances, in: Extreme Ocean Waves: 97–128, Eds: Pelinovsky, E. and Harif, Ch., Springer, 2008.
[36]Kartashova, E. and Shabat, A., Computable Integrability, Chapter 1: General notions and ideas, RISC Report Series, N0002-04-2005, 2005.
[37]Karuzskii, A. L., Lykov, A. N., Perestoronin, A. V. and Golovashkin, A. I., Microwave nonlinear resonance incorporating the helium heating effect in superconducting microstrip resonators, Phys. C: Superconduct., 408-410 (2004), 739–740.
[38]Kovriguine, D. A. and Maugin, G. A., Multiwave nonlinear couplings in elastic structures, Math. Prob. Eng., doi:10.1155/MPE/2006/76041, 2006.
[39]Kundu, M. and Bauer, D., Nonlinear resonance absorption in the laser-cluster interaction, Phys. Rev. Lett., 96 (2006), 1234011–123401-4.
[40]Leyvraz, F., personal communication, 2008.
[41]Longuet-Higgins, M. S. and Gill, A. E., Resonant interactions between planetary waves, Proc. Roy. Soc. Lond., A299 (1967), 120–140.
[42]L’vov, V. S., Pomyalov, A., Procaccia, I. and Rudenko, O., Finite-dimensional turbulence of planetary waves, Phys. Rev. E, 80 (2009), 066319–43.
[43]Lynch, P., Resonant motions of the three-dimensional elastic pendulum, Int. J. Nonlinear Mech., 37 (2002), 258–264.
[44]Lynch, P., The swinging spring: a simple model of amospheric balance, in book: Large-Scale Atmosphere-Ocean Dynamics: Vol II: Geometric Methods and Models: 64–108, Eds. Norbury, J. and Roulstone, I., Cambridge University Press, 2002.
[45]Lynch, P., private communication, 2009.
[46]Lynch, P. and Houghton, C., Pulsation and pecession of the resonant swinging spring, Phys. D, 190 (2004), 38–62.
[47]McGoldrick, L. F., Resonant interactions among capillary-gravity waves, Fluid Mech., 21 (1967), 305–331.
[48]Menyuk, C. R., Chen, H. H. and Lee, Y. C., Restricted multiple three-wave interactions: Pan-levè analysis, Phys. Rev. A, 27 (1983), 1597–1611.
[49]Menyuk, C. R., Chen, H. H. and Lee, Y. C., Restricted multiple three-wave interactions: integrable cases of this system and other related systems, J. Math. Phys., 24 (1983), 1073–1079.
[50]Mikhailov, A. V., Shabat, A. B. and Sokolov, V. V., The symmetry approach to classification of integrable equations, in book: What is integrability?, 115, Ed. Zakharov, V. E., Springer Series in Nonlinear Dynamics, Springer Verlag, 1991.
[51]Moser, J., On invariant curvesof area preserving mappings of anannulus, Nachr. Akad. Wiss. Goett, Math. Phys. Kl., 1 (1962), 1–20.
[52]Murdock, J., Normal Forms and Unfoldings for Local Dynamical Systems, Springer-Verlag, New York, 2003.
[53]Musher, S. L., Rubenchik, A. M. and Zakharov, V. E., Hamiltonian approach to the description of nonlinear plasma phenomena, Phys. Rep., 129 (1985), 285–366.
[54]Nayfeh, A. H., Method of Normal Forms, Wiley-Interscience, NY, 1993.
[55]Oliveira, H. P. de, Soares, I. Damia o and Tonini, E. V., Nonlinear resonance of Kolmogorov-Arnold-Moser tori in bouncing universes, Cosmology and Astroparticle Physics, doi: 10.1088/1475-7516/2006/02/015, 2006.
[56]Olver, P. J., Applications of Lie groups to differential equations, Graduated Texts in Mathematics, 107, Springer, 1993.
[57]Ostrovskii, L. A., Rybak, S. A. and Tsimring, S. L., Negative energy waves in hydrodynamics, Sov. Phys. Uspekhi., 29(11) (1986), 1040–1052.
[58]Pedlosky, J., Geophysical Fluid Dynamics, Second Edition, Springer, 1987.
[59]Phillips, O. M., On the dynamics of unsteady gravity waves of infinite amplitude, Fluid Mech., 9 (1960), 193–217.
[60]Piterbarg, L. I., Hamiltonian formalism for Rossby waves, AMS Trans., 2 (1998), 131–166.
[61]Punzmann, H., Shats, M. G. and Xia, H., Phase randomization of three-wave interactions in capillary waves, Phys. Rev. Lett., 103 (2009), 0645021–064502-4.
[62]Pushkarev, A. N., On the Kolmogorov and frozen turbulence in numerical simulation of capillary waves, Euro. J. Mech. B: Fluids, 18(3) (1999), 345–351.
[63]Syvokon, V. E., Kovdrya, Yu. Z. and Nasyedkin, K. A., Nonlinear features of phonon-ripplon modes in the electron crystal over liquid Helium, Low Temp. Phys., 144(1-3) (2006), 35–48.
[64]Treumann, R. and Baumjohann, W., Advanced Space Plasma Physics, Imperial Colledge Press, London, 2001.
[65]Tsytovich, V. N., Nonlinear effects in plasma, Plenum, New York, 1970.
[66]Verheest, F., Proof of integrability for five-wave interaactions in a case with unequal coupling constants, J. Phys. A: Math. Gen., 21 (1988), L545–L549.
[67]Verheest, F., Integrability of restricted multiple three-wave interactions II, coupling constants with ratios 1 and 2, J. Math. Phys., 29 (1988), 2197–2201.
[68]Whittaker, E. T. and Watson, G. N., A Course in Modern Analysis, 4th ed., Cambridge, England, Cambridge University Press, 1990.
[69]Wright, W. B., Budakian, R. and Putterman, S. J., Diffusing light photography of fully developed isotropic ripple turbulence, Phys. Rev. Lett., 76 (1996), 4528–4531.
[70]Zakharov, V. E., Lvov, V. S. and Falkovich, G., Kolmogorov Spectra of Turbulence, Springer-Verlag, Berlin, 1992.
[71]Zakharov, V. E., Statistical theory of gravity and capillary waves on the surface of a finite-depth fluid, Euro. J. Mech. B: Fluids, 18 (1999), 327–344.
[72]Zakharov, V. E., Stability of periodic waves of finite amplitude on the surface of deep fluid, Zh. Prikl. Mekh. Tekh. Fiz., 9 (1968), 86–94.
[73]Zakharov, V. E. and Filonenko, N.N., Weak turbulence of capillary waves, Appl. Mech. Tech. Phys., 4 (1967), 500–515.
[74]Zakharov, V. E., Korotkevich, A. O., Pushkarev, A. N. and Dyachenko, A. I., Mesoscopic wave turbulence, JETP Lett., 82 (2005), 487–491.
[75]Zakharov, V. E. and Shulman, E. I., Integrability of nonlinear systems and perturbation theory, in book: What is Integrability? Ed. Zakharov, V. E., Springer, 185, 1990.

Keywords

Resonance Clustering in Wave Turbulent Regimes: Integrable Dynamics

  • Miguel D. Bustamante (a1) and Elena Kartashova (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed