Skip to main content Accessibility help
×
Home

Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter

  • Jun Zhu (a1), Xinghui Zhong (a2), Chi-Wang Shu (a3) and Jianxian Qiu (a4)

Abstract

In this paper, we propose a new type of weighted essentially non-oscillatory (WENO) limiter, which belongs to the class of Hermite WENO (HWENO) limiters, for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving hyperbolic conservation laws. This new HWENO limiter is a modification of the simple WENO limiter proposed recently by Zhong and Shu [29]. Both limiters use information of the DG solutions only from the target cell and its immediate neighboring cells, thus maintaining the original compactness of the DG scheme. The goal of both limiters is to obtain high order accuracy and non-oscillatory properties simultaneously. The main novelty of the new HWENO limiter in this paper is to reconstruct the polynomial on the target cell in a least square fashion [8] while the simple WENO limiter [29] is to use the entire polynomial of the original DG solutions in the neighboring cells with an addition of a constant for conservation. The modification in this paper improves the robustness in the computation of problems with strong shocks or contact discontinuities, without changing the compact stencil of the DG scheme. Numerical results for both one and two dimensional equations including Euler equations of compressible gas dynamics are provided to illustrate the viability of this modified limiter.

Copyright

Corresponding author

*Corresponding author.Email addresses:zhujun@nuaa.edu.cn (J. Zhu), zhongxh@math.msu.edu (X. Zhong), shu@dam.brown.edu (C.-W. Shu), jxqiu@xmu.edu.cn (J. Qiu)

References

Hide All
[1]Balsara, D. S. and Shu, C.-W., Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy, Journal of Computational Physics, 160 (2000), 405452.
[2]Biswas, R., Devine, K.D. and Flaherty, J., Parallel, adaptive finite element methods for conservation laws, Applied Numerical Mathematics, 14 (1994), 255283.
[3]Burbeau, A., Sagaut, P. and Bruneau, C.H., A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods, Journal of Computational Physics, 169 (2001), 111150.
[4]Cockburn, B., Hou, S. and Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Mathematics of Computation, 54 (1990), 545581.
[5]Cockburn, B., Lin, S.-Y. and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, Journal of Computational Physics, 84 (1989), 90113.
[6]Cockburn, B. and Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Mathematics of Computation, 52 (1989), 411435.
[7]Cockburn, B. and Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, Journal of Computational Physics, 141 (1998), 199224.
[8]Dumbser, M., Balsara, D.S., Toro, E.F. and Munz, C.D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes on unstructured meshes, Journal of Computational Physics, 227 (2008), 82098253.
[9]Dumbser, M. and Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, Journal of Computational Physics, 221 (2007), 693723.
[10]Dumbser, M., Zanotti, O., Loubère, R. and Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, Journal of Computational Physics, 278 (2014), 4775.
[11]Friedrichs, O., Weighted essentially non-oscillatory schemes for the interpolation of mean values on unstructured grids, Journal of Computational Physics, 144 (1998), 194212.
[12]Hu, C. and Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, Journal of Computational Physics, 150 (1999), 97127.
[13]Jiang, G. and Shu, C.-W., Efficient implementation of weighted ENO schemes, Journal of Computational Physics, 126 (1996), 202228.
[14]Korobeinikov, V.P., Problems of Point-Blast Theory, American Institute of Physics, 1991.
[15]Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N. and Flaherty, J.E., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Applied Numerical Mathematics, 48 (2004), 323338.
[16]Linde, T., Roe, P.L., Robust Euler codes, in: 13th Computational Fluid Dynamics Conference, AIAA Paper-97-2098.
[17]Liu, X., Osher, S. and Chan, T., Weighted essentially non-oscillatory schemes, Journal of Computational Physics, 115 (1994), 200212.
[18]Luo, H., Baum, J.D. and Lohner, R., A Hermite WENO-based limiter for discontinuous Galerkin method on unstructured grids, Journal of Computational Physics, 225 (2007), 686713.
[19]Qiu, J. and Shu, C.-W., Hermite WENO schemes and their application as limitersfor Runge-Kutta discontinuous Galerkin method: one dimensional case, Journal of Computational Physics, 193 (2003), 115135.
[20]Qiu, J. and Shu, C.-W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM Journal on Scientific Computing, 26 (2005), 907929.
[21]Qiu, J. and Shu, C.-W., A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters, SIAM Journal on Scientific Computing, 27 (2005), 9951013.
[22]Qiu, J. and Shu, C.-W., Hermite WENO schemes and their application as limitersfor Runge-Kutta discontinuous Galerkin method II: two dimensional case, Computers and Fluids, 34 (2005), 642663.
[23]Sedov, L.I., Similarity and Dimensional Methods in Mechanics, Academic Press, New York, 1959.
[24]Shu, C.-W., Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Cockburn, B., Johnson, C., Shu, C.-W. and Tadmor, E. (Editor: Quarteroni, A.), Lecture Notes in Mathematics, volume 1697, Springer, 1998, 325432.
[25]Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shock-capturing schemes, Journal of Computational Physics, 77 (1988), 439471.
[26]Shu, C.-W. and Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, Journal of Computational Physics, 83 (1989), 3278.
[27]Wang, C., Zhang, X., Shu, C.-W. and Ning, J., Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations, Journal of Computational Physics, 231 (2012), 653665.
[28]Woodward, P. and Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, Journal of Computational Physics, 54 (1984), 115173.
[29]Zhong, X. and Shu, C.-W., A simple weighted essentially nonoscillatory limiter for Runge-Kutta discontinuous Galerkin methods, Journal of Computational Physics, 232 (2013), 397415.
[30]Zhu, J., Qiu, J., Shu, C.-W. and Dumbser, M., Runge-Kutta discontinuous Galerkin method using WENO limiters II: Unstructured meshes, Journal of Computational Physics, 227 (2008), 43304353.
[31]Zhu, J., Zhong, X., Shu, C.-W. and Qiu, J.X., Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes, Journal of Computational Physics, 248 (2013), 200220.

Keywords

MSC classification

Related content

Powered by UNSILO

Runge-Kutta Discontinuous Galerkin Method with a Simple and Compact Hermite WENO Limiter

  • Jun Zhu (a1), Xinghui Zhong (a2), Chi-Wang Shu (a3) and Jianxian Qiu (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.