Skip to main content
×
×
Home

The Split-Operator Technique for the Study of Spinorial Wavepacket Dynamics

  • A. Chaves (a1), G. A. Farias (a1), F. M. Peeters (a1) (a2) and R. Ferreira (a1) (a3)
Abstract

The split-operator technique for wave packet propagation in quantum systems is expanded here to the case of propagatingwave functions describing Schrödinger particles, namely, charge carriers in semiconductor nanostructures within the effective mass approximation, in the presence of Zeeman effect, as well as of Rashba and Dresselhaus spin-orbit interactions. We also demonstrate that simple modifications to the expanded technique allow us to calculate the time evolution of wave packets describing Dirac particles, which are relevant for the study of transport properties in graphene.

Copyright
Corresponding author
*Corresponding author. Email addresses: andrey@fisica.ufc.br (A. Chaves), gil@fisica.ufc.br (G. A. Farias), francois.peeters@uantwerpen.be (F. M. Peeters), robson.ferreira@lpa.ens.fr (R. Ferreira)
References
Hide All
[1]Degani, M.H. and Maialle, M. Z., Numerical Calculations of the Quantum States in Semiconductor Nanostructures, J. Comp. Theor. Nanosci. 7 (2010) 454.
[2]Yuan, S., De Raedt, H., and Katsnelson, M. I., Modeling electronic structure and transport properties of graphene with resonant scattering centers, Phys. Rev. B 82 (2010) 115448.
[3]Weisse, A., Wellein, G., Alvermann, A., and Fehske, H., The Kernel Polynomial Method, Rev. Mod. Phys. 78 (2006) 275.
[4]Szafran, B. and Peeters, F. M., Lorentz-force induced asymmetry in the Aharonov-Bohm effect in a three-terminal semiconductor quantum ring, Europhys. Lett. 70 (2005) 810.
[5]Chwiej, T and Szafran, B, Fractional conductance oscillations in quantum rings: wave packet picture of transport in a few-electron system, J. Phys.: Condens. Matter 25 (2013) 155802.
[6]Chaves, A., Farias, G. A., Peeters, F. M., and Szafran, B., Wave packet dynamics in semiconductor quantum rings of finite width, Phys. Rev. B 80 (2009) 125331.
[7]Romo, R., Villavicencio, J., and Ladrón de Guevara, M. L., Trapping effects in wave-packet scattering in a double-quantum-dot Aharonov-Bohm interferometer, Phys. Rev. B 86 (2012) 085447.
[8]Petrović, M. D., Peeters, F. M., Chaves, A., and Farias, G. A., Conductance maps of quantum rings due to a local potential perturbation, J. Phys.: Condens. Matter 25 (2013) 495301.
[9]Kalina, R., Szafran, B., Bednarek, S., and Peeters, F. M., Magnetic-Field Asymmetry of Electron Wave Packet Transmission in Bent Channels Capacitively Coupled to a Metal Gate, Phys. Rev. Lett. 102 (2009) 066807.
[10]Kreisbeck, C., Kramer, T., Buchholz, S. S., Fischer, S. F., Kunze, U., Reuter, D., and Wieck, A. D., Phase shifts and phase π jumps in four-terminal waveguide Aharonov-Bohm interferometers, Phys. Rev. B 82 (2010) 165329.
[11]Fillion-Gourdeau, F., Lorin, E., and Bandrauk, A. D., A split-step numerical method for the time-dependent Dirac equation in 3-D axisymmetric geometry, J. Comp. Phys. 272 (2014) 559.
[12]Demikhovskii, V. Ya., Maksimova, G. M., Perov, A. A., and Frolova, E. V., Space-time evolution of Dirac wave packets, Phys. Rev. A 82 (2010) 052115.
[13]Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grig-orieva, I. V., Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films, Science 306 (2004) 666669.
[14]Schrödinger, E., Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 24 (1930) 418.
[15]Rusin, T.M. and Zawadzki, W., Zitterbewegung of electrons in graphene in a magnetic field, Phys. Rev. B 78 (2008) 125419.
[16]Zawadzki, W. and Rusin, T. M., Zitterbewegung (trembling motion) of electrons in semiconductors: a review, J. Phys.: Condens. Matter 23 (2011) 143201.
[17]Katsnelson, M. I., Novoselov, K. S., and Geim, A. K., Chiral tunneling and the Klein paradox in graphene, Nat. Phys. 2 (2006) 620.
[18]Peskin, U., Kosloff, R., and Moiseyev, N., The solution of the time dependent Schrdinger equation by the (t, t’) method: The use of global polynomial propagators for time dependent Hamiltonians, J. Chem. Phys. 100 (1994) 8849.
[19]Alvermann, A. and Fehske, H., High-order commutator-free exponential time-propagation of driven quantum systems, J. Comp. Phys. 230 (2011) 5930.
[20]Tal-Ezer, H. and Kosloff, R., An accurate and efficient scheme for propagating the time dependent Schrödinger equation, J. Chem. Phys. 81 (1984) 3967.
[21]Fehske, H., Schleede, J., Schubert, G., Wellein, G., Filinov, V. S., and Bishop, A. R., Numerical approaches to time evolution of complex quantum systems, Phys. Lett. A 373 (2009) 2182.
[22]McLachlan, R.I. and Quispel, G. R. W., Splitting methods, Acta Numerica 11 (2002) 341.
[23]Dattoli, G., Ottaviani, P. L., Segreto, A., and Torre, A., Symmetric-split-operator techniques and finite-difference methods for the solution of classical and quantum evolution problems, Il Nuovo Cimento B 111 (1996) 825.
[24]Schliemann, J., Cyclotron motion and magnetic focusing in semiconductor quantum wells with spin-orbit coupling, Phys. Rev. B 77 (2008) 125303.
[25]Biswas, T. and Ghosh, T. K., Wave packet dynamics and zitterbewegung of heavy holes in a quantizing magnetic field, J. Appl. Phys. 115 (2014) 213701.
[26]Demikhovskii, V. Ya., Maksimova, G. M., and Frolova, E. V., Wave packet dynamics in a two-dimensional electron gas with spin orbit coupling: Splitting and zitterbewegung, Phys. Rev. B 78 (2008) 115401.
[27]Watanabe, N. and Tsukada, M., Fast and stable method for simulating quantum electron dynamics, Phys. Rev. E 62 (2000) 2914.
[28]Suzuki, M., Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations, Phys. Lett. A 146 (1990) 319.
[29]Press, William H., Flannery, Brian P., Teukolsky, Saul A., Vetterling, William T., Numerical Recipes in Fortran 77, Cambridge University Press, Cambridge, 1992, pp. 2299.
[30]Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., and Geim, A. K., The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109.
[31]Zhou, S. Y., Gweon, G.-H., Fedorov, A. V., First, P. N., de Heer, W. A., Lee, D.-H., Guinea, F., Castro Neto, A. H., and Lanzara, A., Substrate-induced band gap opening in epitaxial graphene, Nat. Mat. 6 (2007) 770.
[32]Badalyan, S. M., Matos-Abiague, A., Vignale, G., and Fabian, J., Beating of Friedel oscillations induced by spin-orbit interaction, Phys. Rev. B 81 (2010) 205314.
[33]Badalyan, S. and Fabian, J., Spin Edge Helices in a Perpendicular Magnetic Field, Phys. Rev. Lett. 105 (2010) 186601.
[34]Rakhimov, Kh. Yu., Chaves, A., Farias, G. A., and Peeters, F. M., Wavepacket scattering of Dirac and Schrödinger particles on potential and magnetic barriers, J. Phys.: Condens. Matter 23 (2011) 275801.
[35]Maksimova, G. M., Demikhovskii, V. Ya. and Frolova, E. V., Wave packet dynamics in a mono-layer graphene, Phys. Rev. B 78 (2008) 235321.
[36]Allain, P.E. and Fuchs, J. N., Klein tunneling in graphene: optics with massless electrons, Eur. Phys. J. B 83 (2011) 301.
[37]W, C.. Beenakker, J., Colloquium: Andreev reflection and Klein tunneling in graphene, Rev. Mod. Phys. 80 (2008) 1337.
[38]Pereira, J. M., Chaves, A., Farias, G. A., and Peeters, F. M., Klein tunneling in single and multiple barriers in graphene, Semic. Sci. Tech. 25 (2010) 033002.
[39]Matulis, A. and Peeters, F. M., Quasibound states of quantum dots in single and bilayer graphene, Phys. Rev. B 77 (2008) 115423.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed