Skip to main content Accessibility help

A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

  • Jehanzeb Hameed Chaudhry (a1), Jeffrey Comer (a2), Aleksei Aksimentiev (a2) and Luke N. Olson (a3)


The conventional Poisson-Nernst-Planck equations do not account for the finite size of ions explicitly. This leads to solutions featuring unrealistically high ionic concentrations in the regions subject to external potentials, in particular, near highly charged surfaces. A modified form of the Poisson-Nernst-Planck equations accounts for steric effects and results in solutions with finite ion concentrations. Here, we evaluate numerical methods for solving the modified Poisson-Nernst-Planck equations by modeling electric field-driven transport of ions through a nanopore. We describe a novel, robust finite element solver that combines the applications of the Newton’s method to the nonlinear Galerkin form of the equations, augmented with stabilization terms to appropriately handle the drift-diffusion processes.

To make direct comparison with particle-based simulations possible, our method is specifically designed to produce solutions under periodic boundary conditions and to conserve the number of ions in the solution domain. We test our finite element solver on a set of challenging numerical experiments that include calculations of the ion distribution in a volume confined between two charged plates, calculations of the ionic current though a nanopore subject to an external electric field, and modeling the effect of a DNA molecule on the ion concentration and nanopore current.


Corresponding author

Corresponding author. Email:


Hide All
[1] Neher, E., Sakmann, B., Steinbach, J., The extracellular patch clamp: A method for resolving currents through individual open channels in biological membranes, Pflug. Arch. Eur. J. Physiol. 375 (1978) 219–228.
[2] Sakmann, B., Neher, E., Patch clamp techniques for studying ionic channels in excitable membranes, Ann. Rev. Physiol. 46 (1984) 455–472.
[3] Mathé, J., Visram, H., Viasnoff, V., Rabin, Y., Meller, A., Nanopore unzipping of individual DNA hairpin molecules, Biophys. J. 87 (2004) 3205–3212.
[4] Zhao, Q., Sigalov, G., Dimitrov, V., Dorvel, B., Mirsaidov, U., Sligar, S., Aksimentiev, A., Timp, G., Detecting SNPs using a synthetic nanopore, Nano Lett. 7 (2007) 1680–1685.
[5] Zhao, Q., Comer, J., Dimitrov, V., Aksimentiev, A., Timp, G., Stretching and unzipping nucleic acid hairpins using a synthetic nanopore, Nucl. Acids Res. 36 (2008) 1532–1541.
[6] Kang, X. F., Cheley, S., Guan, X. Y., Bayley, H., Stochastic detection of enantiomers, J. Am. Chem. Soc. 128 (2006) 10684–10685.
[7] Kasianowicz, J. J., Brandin, E., Branton, D., Deamer, D. W., Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci. USA 93 (1996) 13770–13773.
[8] Akeson, M., Branton, D., Kasianowicz, J. J., Brandin, E., Deamer, D. W., Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within singe RNA molecules, Biophys. J. 77 (1999) 3227–3233.
[9] Branton, D., Deamer, D., Marziali, A., Bayley, H., Benner, S., Butler, T., Di, M. Ventra, Garaj, S., Hibbs, A., Huang, X., et al., The potential and challenges of nanopore sequencing, Nature Biotech. 26 (10) (2008) 1146–1153.
[10] Clarke, J., Wu, H., Jayasinghe, L., Patel, A., Reid, S., Bayley, H., Continuous base identification for single-molecule nanopore DNA sequencing, Nature Nanotech. 4 (2009) 265–270.
[11] Derrington, I., Butler, T., Collins, M., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J., Nanopore DNA sequencing with MspA, Proc. Natl. Acad. Sci. USA 107 (2010) 16060.
[12] Im, W., Roux, B., Ions and counterions in a biological channel: a molecular dynamics study of OmpF porin from Escherichia coli in an explicit membrane with 1 M KCl aqueous salt solution, J. Mol. Biol. 319 (2002) 1177–1197.
[13] Im, W., Roux, B., Ion permeation and selectivity of OmpF porin: A theoretical study based on molecular dynamics, brownian dynamics, and continuum electrodiffusion theory, J. Mole. Bio. 322 (2002) 851 –869.
[14] Noskov, S. Y., Im, W., Roux, B., Ion permeation through the a-hemolysin channel: Theoretical studies based on Brownian Dynamics and Poisson-Nernst-Plank electrodiffusion theory, Biophys. J. 87 (2004) 2299–2309.
[15] Aksimentiev, A., Heng, J. B., Timp, G., Schulten, K., Microscopic kinetics of DNA translocation through synthetic nanopores, Biophys. J. 87 (2004) 2086–2097.
[16] Aksimentiev, A., Schulten, K., Imaging alpha-hemolysin with molecular dynamics: Ionic conductance, osmotic permeability and the electrostatic potential map, Biophys. J. 88 (2005) 3745–3761.
[17] Comer, J., Dimitrov, V., Zhao, Q., Timp, G., Aksimentiev, A., Microscopic mechanics of hairpin DNA translocation through synthetic nanopores, Biophys. J. 96 (2009) 593–608.
[18] Pezeshki, S., Chimerel, C., Bessonov, A. N., Winterhalter, M., Kleinekathofer, U., Understanding ion conductance on a molecular level: An all-atom modeling of the bacterial porin OmpF, Biophys. J. 97 (2009) 1898–1906.
[19] Luo, Y., Egwolf, B., Walters, D., Roux, B., Ion selectivity of α-hemolysin with a β-cyclodextrin adapter.I. Single ion potential of mean force and diffusion coefficient, J. Phys. Chem. B (2009) 2035–2042.
[20] Aksimentiev, A., Deciphering ionic current signatures of DNA transport through a nanopore, Nanoscale 2 (2010) 468–483.
[21] Maffeo, C., Bhattacharya, S., Yoo, J., Wells, D., Aksimentiev, A., Modeling and simulation of ion channels, Chem. Rev. 112 (2012) 6250–6284.
[22] Allen, M. P., Tildesley, D. J., Computer Simulation of Liquids, Oxford University Press, New York, 1987.
[23] Carr, R., Comer, J., Ginsberg, M., Aksimentiev, A., Atoms-to-microns model for small solute transport through sticky nanochannels, Lab Chip 11 (2011) 3766–3773.
[24] Comer, J., Aksimentiev, A., Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics, J. Phys. Chem. C 116 (2012) 3376–3393.
[25] Davis, M. E., McCammon, J. A., Electrostatics in biomolecular structure and dynamics, Chem. Rev. 90 (1990) 509–521.
[26] Barcilon, V., Chen, D.-P. and Eisenberg, R. S., Ion flow through narrow membrane channels. Part II, SIAM J. Appl. Math. 52 (1992) 1405–1425.
[27] Kurnikova, M. G., Coalson, R. D., Graf, P., Nitzan, A., A lattice relaxation algorithm for three-dimensional Poisson-Nernst-Planck theory with application to ion transport through the gramicidin A channel, Biophys J. 76 (1999) 642–656.
[28] Lu, B., Zhou, Y., Huber, G. A., Bond, S. D., Holst, M. J., McCammon, J. A., Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution, J. Chem. Phys. 127 (2007) 135102 (17 pages).
[29] Kilic, M. S., Bazant, M. Z., Ajdari, A., Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations, Phys. Rev. E 75 (2007) 021503.
[30] Bolintineanu, D. S.,Sayyed-Ahmad, A., Davis, H. T., Kaznessis, Y. N., Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore, PLoS Comput. Biol. 5 (1) (2009) e1000277.
[31] Cardenas, A. E., Coalson, R. D., Kurnikova, M. G., Three-dimensional Poisson-Nernst-Planck theory studies: Influence of membrane electrostatics on gramicidin A channel conductance, Biophys. J. 79 (1) (2000) 80–93.
[32] Cohen, H., Cooley, J., The numerical solution of the time-dependent Nernst-Planck equations, Biophys. J. 5 (1965) 145–162.
[33] Lu, B., Zhou, Y. C., Huber, G. A., Bond, S. D., Holst, M. J., McCammon, J. A., Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution, J. Chem. Phys. 127 (2007) 135102.
[34] Lu, B., Holst, M. J., Andrew, J. McCammon, Zhou, Y. C., Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes I: Finite element solutions, J. Comput. Phys. 229 (2010) 6979–6994.
[35] Lu, B., Zhou, Y., Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: Size effects on ionic distributions and diffusion-reaction rates, Biophys. J. 100 (2011) 2475–2485.
[36] Zheng, Q., Chen, D., Wei, G.-W., Second-order Poisson-Nernst-Planck solver for ion transport, J. Comput. Phys. 230 (2011) 5239–5262.
[37] Logg, A., Wells, G. N., DOLFIN: Automated finite element computing, ACM Trans. Math. Softw. 37 (2010) 20:1–20:28.
[38] Braess, D., Finite Elements: Theory, Fast Solvers, and Applications in Elasticity Theory, 3rd Edition, Cambridge University Press, 2007.
[39] Bochev, P. B., Gunzburger, M. D., Shadid, J. N., Stability of the SUPG finite element method for transient advection-diffusion problems, Comp. Meth. Appl. Mech. Engr. 193 (23-26) (2004) 2301–2323.
[40] Hughes, T. J. R., Recent progress in the development and understanding of SUPG methods with special reference to the compressible Euler and Navier-Stokes equations, Int. J. Numer. Meth. Fluids 7 (1987) 1261–1275.
[41] Hughes, T. J. R., Franca, L. P., Hulbert, G. M., A new finite element formulation for computational fluid dynamics: VIII. The galerkin/least-squares method for advective-diffusive equations, Comp. Meth. Appl. Mech. Engr. 73 (1989) 173–189.
[42] Franca, L. P., Frey, S. L., Hughes, T. J. R., Stabilized finite element methods: I. Application to the advective-diffusive model, Comp. Meth. Appl. Mech. Engr. 95 (1992) 253–276.
[43] T, T.E., Stabilized finite element formulations for incompressible flow computations, Adv. Appl. Mech. 28 (1991) 1–44.
[44] Hughes, T. J., Mallet, M., Akira, M., A new finite element formulation for computational fluid dynamics: II. Beyond SUPG, Comp. Meth. Appl. Mech. Engr. 54 (1986) 341–355.
[45] Gilson, M. K., Davis, M. E., Luty, B. A., McCammon, J. A., Computation of electrostatic forces on solvated molecules using the poisson-boltzmann equation, J. Phys. Chem. 97 (1993) 3591–3600.
[46] Zhou, Z., Payne, P., Vasquez, M., Kuhn, N., Levitt, M., Finite-difference solution of the Poisson-Boltzmann equation: Complete elimination of self-energy, J. Comput. Chem. 17 (1996) 1344–1351.
[47] Chaudhry, J., Bond, S., Olson, L., Finite element approximation to a finite-size modified Poisson-Boltzmann equation, J. Sci. Comput. 47 (2011) 347–364, 10.1007/s10915-010-9441-7.
[48] Bond, S. D., Chaudhry, J. H., Cyr, E. C., Olson, L. N., A first-order system least-squares finite element method for the Poisson-Boltzmann equation, J. Comput. Chem. 31 (8) (2010) 1625–1635.
[49] Chern, I.‐L., Liu, J.‐G., Wang, W.‐C., Accurate evaluation of electrostatics for macromolecules in solution, Meth. Appl. Anal. 10 (2003) 309–328.
[50] Aksoylu, B., Bond, S. D., Cyr, E. C., Holst, M. J., Goal-oriented adaptivity and multilevel pre-conditioning for the Poisson-Boltzmann equation, J. Sci. Comput. 52 (2012) 202–225.
[51] Bazant, M. Z., Kilic, M. S., Storey, B. D., Ajdari, A., Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions, Adv. Colloid Interface Sci. 152 (1-2) (2009) 48–88.
[52] Heng, J., Aksimentiev, A., Ho, C., Marks, P., Grinkova, Y., Sligar, S., Schulten, K., Timp, G., The electromechanics of dna in a synthetic nanopore, Biophys. J. 90 (2006) 1098–1106.
[53] Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., Dickerson, R. E., Structure of a b-dna dodecamer: Conformation and dynamics, Proc. Natl. Acad. Sci. USA 78 (1981) 2179–2183.
[55] Dolinsky, T., Czodrowski, P., Li, H., Nielsen, J., Jensen, J., Baker, G. K. N., Pdb2pqr: Expanding and upgrading automated preparationof biomolecular structures for molecular simulations, Nucleic Acids Res. 35 (2007) W522–W525.
[56] Dolinsky, T., Nielsen, J., McCammon, J., Baker, N., Pdb2pqr: An automated pipeline for the setup, execution, and analysis of Poisson-Boltzmann electrostatics calculations, Nucleic Acids Res. 35 (2004) W665–W667.
[57] Yu, Z., Holst, M. J., Cheng, Y., McCammon, J. A., Feature-preserving adaptive mesh generation for molecular shape modeling and simulation, J. Mol. Graph. Model. 26 (2008) 1370 –1380.
[58] Geuzaine, C., Remacle, J.-F., Gmsh: A 3-d finite element mesh generator with built-in preand post-processing facilities, Int. J. Numer. Meth. Engr. 79 (2009) 1309–1331.
[59] Smeets, R. M. M., Keyser, U. F., Krapf, D., Wu, M.-Y., Dekker, N. H., Dekker, C., Salt dependence of ion transport and dna translocation through solid-state nanopores, Nano Letters 6 (2006) 89–95.
[60] Young, M., Jayaram, B., Beveridge, D., Local dielectric environment of B-DNA in solution: Results from a 14 ns molecular dynamics trajectory, J. Phys. Chem. B 102 (1998) 7666–7669.
[61] Roux, B., The calculation of the potential of mean force using computer simulations, Comp. Phys. Commun. 91 (1995) 275–282.
[62] Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kale, L., Schulten, K., Scalable molecular dynamics with NAMD, J. Comp. Chem. 26 (2005) 1781–1802.
[63] MacKerell, A. D., Jr., , Bashford, D., Bellott, M., Dunbrack, R. L., Jr., , Evanseck, J., Field, M. J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph, D., Kuchnir, L., Kuczera, K., Lau, F. T. K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D. T., Prodhom, B., Reiher, I. W. E., Roux, B., Schlenkrich, M., Smith, J., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., Allatom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B 102 (1998) 3586–3616.
[64] Beglov, D., Roux, B., Finite representation of an infinite bulk system: Solvent boundary potential for computer simulations, J. Chem. Phys. 100 (1994) 9050–9063.
[65] Im, W., Roux, B., Brownian dynamics simulations of ions channels: A general treatment of electrostatic reaction fields for molecular pores of arbitrary geometry, J. Chem. Phys. 115 (2001) 4580.
[66] Wells, D. B., Abramkina, V., Aksimentiev, A., Exploring transmembrane transport through a-hemolysin with grid-steered molecular dynamics, J. Chem. Phys. 127 (2007) 125101.


A Stabilized Finite Element Method for Modified Poisson-Nernst-Planck Equations to Determine Ion Flow Through a Nanopore

  • Jehanzeb Hameed Chaudhry (a1), Jeffrey Comer (a2), Aleksei Aksimentiev (a2) and Luke N. Olson (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed