Skip to main content
×
×
Home

A Static Condensation Reduced Basis Element Approach for the Reynolds Lubrication Equation

  • Eduard Bader (a1), Martin A. Grepl (a2) and Siegfried Müller (a2)
Abstract
Abstract

In this paper, we propose a Static Condensation Reduced Basis Element (SCRBE) approach for the Reynolds Lubrication Equation (RLE). The SCRBE method is a computational tool that allows to efficiently analyze parametrized structures which can be decomposed into a large number of similar components. Here, we extend the methodology to allow for a more general domain decomposition, a typical example being a checkerboard-pattern assembled from similar components. To this end, we extend the formulation and associated a posteriori error bound procedure. Our motivation comes from the analysis of the pressure distribution in plain journal bearings governed by the RLE. However, the SCRBE approach presented is not limited to bearings and the RLE, but directly extends to other component-based systems. We show numerical results for plain bearings to demonstrate the validity of the proposed approach.

Copyright
Corresponding author
*Corresponding author. Email addresses: bader@aices.rwth-aachen.de (E. Bader), grepl@igpm.rwth-aachen.de (M. A. Grepl), mueller@igpm.rwth-aachen.de (S. Müller)
References
Hide All
[1] Bader E.. A reduced basis element approach for the reynolds lubrication equation. Master's thesis, RWTH Aachen University, 2012.
[2] Bai S., Peng X., Li Y., and Sheng S.. A hydrodynamic laser surface-textured gas mechanical face seal. Tribology Letters, 38(2):187194, 2010.
[3] Bhushan B.. Principle and Applications of Tribology, 2nd Edition. Tribology Series. Wiley, 2013.
[4] Chan T. F. and Mathew T. P.. Domain decomposition algorithms. Acta Numerica, 3:61143, 1 1994.
[5] Craig R. R. Jr. and Bampton M. C.. Coupling of substructures for dynami analyses. AIAA Journal, 6(7):13131319, 1968.
[6] Eftang J. L., Huynh D. B. P., Knezevic D. J., Rønquist E. M., and Patera A. T.. Adaptive port reduction in static condensation. In Proceedings of 7th Vienna Conference on Mathematical Modelling (MATHMOD 2012), 2012.
[7] Eftang J. L. and Patera A. T.. Port reduction in parametrized component static condensation: approximation and a posteriori error estimation. Int. J. Numer. Methods Eng., 96(5):269302, 2013.
[8] Gadeschi G. B., Backhaus K., and Knoll G.. Numerical analysis of laser-textured piston-rings in the hydrodynamic lubrication regime. Journal of Tribology, 134(4):8 pages, 2012.
[9] Hesthaven J. S., Rozza G., and Stamm B.. Certified Reduced Basis Methods for Parametrized Partial Differential Equations. SpringerBriefs in Mathematics, 2015.
[10] Hurty W. C.. Dynamic analysis of structural systems using component modes. AIAA Journal, 3(4):678685, 1965.
[11] Huynh D. B. P.. A static condensation reduced basis element approximation: Application to three-dimensional acoustic muffler analysis. International Journal of Computational Methods, 11(03):1343010, 2014.
[12] Huynh D. B. P., Knezevic D. J., and Patera A. T.. A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM: Math. Model. Num., 47:213251, 1 2013.
[13] Huynh D. B. P., Knezevic D. J., and Patera A. T.. A static condensation reduced basis element method: complex problems. Comput. Methods Appl. Mech. Engrg., 259(0):197216, 2013.
[14] Huynh D. B. P., Rozza G., Sen S., and Patera A. T.. A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math., 345(8):473478, 2007.
[15] Kango S., Singh D., and Sharma R.. Numerical investigation on the influence of surface texture on the performance of hydrodynamic journal bearing. Meccanica, 47(2):469482, 2012.
[16] Kumar Gupta K., Kumar R., Kumar H., and Sharma M.. Study on effect of surface texture on the performance of hydrodynamic journal bearing. International Journal of Engineering and Advanced Technology, 3(1):4954, 2013.
[17] Maday Y. and Rønquist E. M.. A reduced-basis element method. J. Sci. Comput., 17:447459, 2002. 10.1023/A:1015197908587.
[18] Maday Y. and Rønquist E. M.. The reduced basis element method: Application to a thermal fin problem. SIAM J. Sci. Comput., 26(1):240258, 2004.
[19] Murty K.. Note on a bard-type scheme for solving the complementarity problem. Opsearch, 11:123130, 1974.
[20] Pinkus O. and Sternlicht B.. Theory of hydrodynamic lubrication. McGraw-Hill, 1961.
[21] Prud’homme C., Rovas D. V., Veroy K., Machiels L., Maday Y., Patera A. T., and Turinici G.. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluid. Eng., 124(1):7080, 2002.
[22] Rozza G., Huynh D. B. P., and Patera A. T.. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering, 15(3):229275, 2008.
[23] Vallaghé S. and Patera A.. The static condensation reduced basis element method for a mixed-mean conjugate heat exchanger model. SIAM J. Sci. Comput., 36(3):B294–B320, 2014.
[24] Veroy K., Prud’homme C., Rovas D. V., and Patera A. T.. A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, 2003. AIAA Paper 2003-3847.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 181 *
Loading metrics...

* Views captured on Cambridge Core between 5th December 2016 - 19th January 2018. This data will be updated every 24 hours.