Skip to main content
    • Aa
    • Aa

Stochastic Collocation on Unstructured Multivariate Meshes

  • Akil Narayan (a1) and Tao Zhou (a2)

Collocation has become a standard tool for approximation of parameterized systems in the uncertainty quantification (UQ) community. Techniques for least-squares regularization, compressive sampling recovery, and interpolatory reconstruction are becoming standard tools used in a variety of applications. Selection of a collocation mesh is frequently a challenge, but methods that construct geometrically unstructured collocation meshes have shown great potential due to attractive theoretical properties and direct, simple generation and implementation. We investigate properties of these meshes, presenting stability and accuracy results that can be used as guides for generating stochastic collocation grids in multiple dimensions.

Corresponding author
*Corresponding author. Email addresses: (A. Narayan), (T. Zhou)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] I. Babuska , F. Nobile , and R. Tempone . A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Review, 52(2):317355, January 2010.

[2] V. Barthelmann , E. Novak , and K. Ritter . High dimensional polynomial interpolation on sparse grids. Advances in Computational Mathematics, 12(4):273288, March 2000.

[3] R. E. Bellman . Adaptive control processes: a guided tour. Princeton University Press, 1961.

[4] E. Bendito , A. Carmona , A.M. Encinas , and J.M. Gesto . Estimation of Fekete points. Journal of Computational Physics, 225(2):23542376, August 2007.

[5] R. Berman , S. Boucksom , and D. Nyström . Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Mathematica, 207(1):127, 2011.

[6] M. Bieri and C. Schwab . Sparse high order FEM for elliptic sPDEs. Computer Methods in Applied Mechanics and Engineering, 198(13-14):11491170, March 2009.

[9] G. Blatman and B. Sudret . Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 230(6):23452367, March 2011.

[10] T. Bloom , L. Bos , C. Christensen , and N. Levenberg . Polynomial interpolation of holomorphic functions in and n. Rocky Mountain Journal of Mathematics, 22(2):441470, June 1992.

[11] T. Bloom and N. Levenberg . Weighted pluripotential theory in $c^n$. American Journal of Mathematics, 125(1):57103, February 2003.

[13] L. Bos , M. Caliari , S. De Marchi , M. Vianello , and Y. Xu . Bivariate lagrange interpolation at the padua points: The generating curve approach. Journal of Approximation Theory, 143(1):1525, November 2006.

[16] J. Bourgain , S. Dilworth , K. Ford , S. Konyagin , and D. Kutzarova . Explicit constructions of RIP matrices and related problems. Duke Mathematical Journal, 159(1):145185, July 2011.

[17] J. Breidt , T. Butler , and D. Estep . A measure-theoretic computational method for inverse sensitivity problems i: Method and analysis. SIAM Journal on Numerical Analysis, 49(5):18361859, 2011.

[18] L. Brutman . On the lebesgue function for polynomial interpolation. SIAM Journal on Numerical Analysis, 15(4):694, 1978.

[19] H.-J. Bungartz and M. Griebel . Sparse grids. Acta Numerica, 13(-1):147269, 2004.

[21] J. Burkardt , M. Gunzburger , and H.-C. Lee . POD and CVT-based reduced-ordermoeling of navier-stokes flows. Computer Methods in Applied Mechanics and Engineering, 196(1-3):337355, December 2006.

[22] M. Caliari , S. De Marchi , and M. Vianello . Bivariate polynomial interpolation on the square at new nodal sets. Applied Mathematics and Computation, 165(2):261274, June 2005.

[25] E.J. Candes and T. Tao . Decoding by linear programming. IEEE Transactions on Information Theory, 51(12):42034215, December 2005.

[26] E.J. Candes and T. Tao . Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12):54065425, December 2006.

[28] S.-K. Choi , R. V. Grandhi , R. A. Canfield , and C.L. Pettit . Polynomial chaos expansion with Latin hypercube sampling for estimating response variability. AIAA Journal, 42(6):11911198, 2004.

[29] A. Cohen , W. Dahmen , and R.A. DeVore . Compressed sensing and best k-term approximation. J. Amer. Math. Soc., 22(1):211231, 2009.

[30] A. Cohen , M. A. Davenport , and D. Leviatan . On the stability and accuracy of least squares approximations. Foundations of Computational Mathematics, 13(5):819834, 2013.

[32] P. Curtis . n-parameter families and best approximation. Pacific Journal of Mathematics, 9(4):10131027, December 1959.

[34] C. de Boor and A. Ron . Computational aspects of polynomial interpolation in several variables. Mathematics of Computation, 58(198):705727, April 1992.

[35] C. de Boor and A. Ron . The least solution for the polynomial interpolation problem. Mathematische Zeitschrift, 210(1):347378, December 1992.

[36] A. E. Deane , I. G. Kevrekidis , G. E. Karniadakis , and S. A. Orszag . Low-dimensional mdoels for complex geometry flows: Application to grooved channels and circular cylinders. Physics of Fluids A: Fluid Dynamics (1989-1993), 3(10):23372354, October 1991.

[38] R. A. DeVore . Deterministic constructions of compressed sensing matrices. Journal of Complexity, 23(4-6):918925, August 2007.

[41] O.G. Ernst , A. Mugler , H.-J. Starkloff , and E. Ullmann . On the convergence of generalized polynomial chaos expansions. ESAIM: Mathematical Modelling and Numerical Analysis, 46(02):317339, 2012.

[43] T. Gerstner and M. Griebel . Numerical integration using sparse grids. Numerical Algorithms, 18(3):209232, January 1998.

[44] R. G. Ghanem and P. D. Spanos Stochastic finite elements: a spectral approach. Springer-Verlag New York, Inc., 1991.

[45] R. GÃijnttner . Evaluation of lebesgue constants. SIAM Journal on Numerical Analysis, 17(4):512520, August 1980.

[46] L. Gyørfi , M. Kohler , A. Krzyz˙ak , and H. Walk . A Distribution-Free Theory of Nonparametric Regression. Springer Series in Statistics, Springer-Verlag, Berlin, 2002.

[47] S. Hosder , R. W. Walters , and M. Balch . Point-collocation nonintrusive polynomial chaos method for stochastic computational fluid dynamics. AIAA Journal, 48(12):27212730, December 2010.

[50] M. C. Kennedy and A. O’Hagan . Bayesian calibration of computer models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(3):425464, January 2001.

[55] M. Eldred . Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences. American Institute of Aeronautics and Astronautics, May 2009.

[56] J.C. Mairhuber . On haar’s theorem concerning chebychev approximation problems having unique solutions. Proceedings of the American Mathematical Society, 7(4):609, August 1956.

[57] Y. Marzouk and D. Xiu . A stochastic collocation approach to bayesian inference in inverse problems. Communications in Computational Physics, 6(4):826847, October 2009.

[59] D. M. Matjila . Bounds for lebesgue functions for freud weights. Journal of Approximation Theory, 79(3):385406, December 1994.

[60] D. M. Matjila . Bounds for the weighted lebesgue functions for freud weights on a larger interval. Journal of Computational and Applied Mathematics, 65(1-3):293298, December 1995.

[61] G. Migliorati , F. Nobile , E. Schwerin , and R. Tempone . Analysis of the discrete l2 projection on polynomial spaces with random evaluations. Foundations of Computational Mathematics, doi:10.1007/s10208-013-9186-4, 2014.

[62] H. Najm . Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics. Annual review of fluid mechanics, 41(1):3552, 2009.

[64] A. Narayan and J. Jakeman . Adaptive leja sparse grid constructions for stochastic collocation and high-dimensional approximation. SIAM Journal on Scientific Computing, 36(6):A2952A2983, 2014.

[65] A. Narayan and D. Xiu . Stochastic collocation methods on unstructured grids in high dimensions via interpolation. SIAM Journal on Scientific Computing, 34(3):A1729A1752, June 2012.

[66] F. Nobile , R. Tempone , and C. G. Webster . An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM Journal on Numerical Analysis, 46(5):24112442, January 2008.

[68] J. Penga , J. Hampton , and A. Doostan . A weighted ℓ1-minimization approach for sparse polynomial chaos expansions. Journal of Computational Physics, 267(0):92111, 2014.

[70] C. Prudhomme , D. V. Rovas , K. Veroy , L. Machiels , Y. Maday , A. T. Patera , and G. Turinici . Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. Journal of Fluids Engineering, 124(1):70, 2002.

[71] R. Pulch and D. Xiu . Generalised polynomial chaos for a class of linear conservation laws. Journal of Scientific Computing, 51(2):293312, May 2012.

[73] H. Rauhut and R. Ward . Sparse Legendre expansions via ℓ1-minimization. Journal of Approximation Theory, 164(5):517533, May 2012.

[74] S. Hosder , R. Walters , and M. Balch . Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables. In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Structures, Structural Dynamics, and Materials and Co-located Conferences. American Institute of Aeronautics and Astronautics, April 2007.

[75] E. Saff and V. Totik . Logarithmic Potentials with External Fields. Springer, Berlin, 1997.

[76] A. Sommariva and M. Vianello . Computing approximate fekete points by QR factorizations of vandermonde matrices. Computers&Mathematics with Applications, 57(8):13241336, April 2009.

[79] T. Tang and T. Zhou . On discrete least square projection in unbounded domain with random evaluations and its application to parametric uncertainty quantification. SIAM Journal on Scientific Computing, 36(5):A2272A2295, 2014.

[81] D. M. Tartakovsky and D. Xiu . Stochastic analysis of transport in tubes with rough walls. Journal of Computational Physics, 217(1):248259, September 2006.

[82] M. A. Taylor , B. A. Wingate , and R. E. Vincent . An algorithm for computing fekete points in the triangle. SIAM Journal on Numerical Analysis, 38(5):17071720, 2000.

[84] L. N. Trefethen and J. A . C. Weideman . Two results on polynomial interpolation in equally spaced points. Journal of Approximation Theory, 65(3):247260, June 1991.

[86] T. Warburton . An explicit construction of interpolation nodes on the simplex. Journal of Engineering Mathematics, 56(3):247262, November 2006.

[87] A. Weil . On some exponential sums. Proceedings of the National Academy of Sciences of the United States of America, 34(5):204207, May 1948. PMID: 16578290 PMCID: PMC1079093.

[91] D. Xiu and Jan S. Hesthaven . High-order collocation methods for differential equations with random inputs. SIAM Journal on Scientific Computing, 27(3):11181139, January 2005.

[92] D. Xiu and G. E. Karniadakis . The wiener-askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24(2):619644, January 2002.

[93] D. Xiu and G. E. Karniadakis . Modeling uncertainty in flow simulations via generalized polynomial chaos. Journal of Computational Physics, 187(1):137167, May 2003.

[94] Z. Xu . Deterministic sampling of sparse trigonometric polynomials. Journal of Complexity, 27(2):133140, April 2011.

[95] Z. Xu and T. Zhou . On sparse interpolation and the design of deterministic interpolation points. SIAM Journal on Scientific Computing, 36(4):A1752A1769, 2014.

[96] L. Yan , L. Guo , and D. Xiu . Stochastic collocation algorithms using ℓ1-minimization. International Journal for Uncertainty Quantification, 2(3):279293, 2012.

[97] J. Yang and Y. Zhang . Alternating direction algorithms for ℓ1-problems in compressive sensing. SIAM Journal on Scientific Computing, 33(1):250278, January 2011.

[98] X. Yang and G. E. Karniadakis . Reweighted ℓ1 minimization method for stochastic elliptic differential equations. Journal of Computational Physics, 248:87108, September 2013.

[99] W. Yin , S. Osher , D. Goldfarb , and J. Darbon . Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing. SIAM J. Imaging Sciences, 1(1):143168, 2008.

[101] T. Zhou , A. Narayan , and Z. Xu . Multivariate discrete least-squares approximations with a new type of collocation grid. SIAM Journal on Scientific Computing, 36(5):A2401A2422, January 2014.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 87 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th June 2017. This data will be updated every 24 hours.