Skip to main content
×
×
Home

Structural Determinants of a Typical Leucine-Rich Repeat Protein

  • Joao M. Martins (a1), Rui M. Ramos (a1) and Irina S. Moreira (a1)
Abstract

The structural and functional description of protein-protein complexes and their comprehension is a key concept, not only to increase the scientific knowledge in basic terms but also for the application to the biomedical and pharmaceutical industry. The binding association between proteins is nowadays attribute to a few key residues at the interface – the hot-spots. The complex between the RNase inhibitor (RI) and RNaseA protein provides an excellent system to study the role of the functional epitope as it is essential in various molecular recognition processes and constitute one of the tightest complexes known. An energetic pattern of the interface is accomplished by computational alanine scanning mutagenesis and a dynamical characterization is accomplished by a detailed study of the molecular dynamical simulations. A special emphasis is given to the role of solvation across the interface and the shielding of warm-and hot-spots from water.

Copyright
Corresponding author
*Corresponding author.Email:irina.moreira@fc.up.pt
References
Hide All
[1]Lee, N. H., Geoghagen, N. S. M., Cheng, E., Cline, R. T., and Fraser, C. M. 1996. Alanine scanning mutagenesis of conserved arginine/lysine-arginine/lysine-X-X-arginine/lysine G protein-activating motifs on m1 muscarinic acetylcholine receptors. Molecular Pharmacology 50: 140148.
[2]Moreira, I., Fernandes, P., and Ramos, M. 2007. Computational Determination of the Relative Free Energy of Binding: Application to Alanine Scanning Mutagenesis. In Molecular Materials with Specific Interactions Modeling and Design. 305339.
[3]Clackson, T., and Wells, J. A. 1995. A hot-spot of binding energy in a hormone receptor interface. Science 267: 383386.
[4]Jin, L., Cohen, F. E., and Wells, J. A. 1994. Structure from function – screening structural models with functional data. Proceedings of the National Academy of Sciences of the United States of America 91: 113117.
[5]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2007. Hot spots-A review of the protein-protein interface determinant amino-acid residues. Proteins-Structure Function and Bioinformatics 68: 803812.
[6]Shapiro, R., Ruiz-Gutierrez, M., and Chen, C. Z. 2000. Analysis of the interactions of human ribonuclease inhibitor with angiogenin and ribonuclease A by mutagenesis: Importance of inhibitor residues inside versus outside the C-terminal “hot spot”. Journal of Molecular Biology 302: 497519.
[7]Chen, C. Z., and Shapiro, R. 1999. Superadditive and subadditive effects of “hot spot” mutations within the interfaces of placental ribonuclease inhibitor with angiogenin and ribonu-clease A. Biochemistry 38: 92739285.
[8]Kobe,, B., and Deisenhofer, J. 1995. A structural basis of the interactions between leucine-rich repeats and protein ligands. Nature 374: 183186.
[9]Kobe,, B., and Deisenhofer, J. 1996. Mechanism of ribonuclease inhibition by ribonuclease inhibitor protein based on the crystal structure of its complex with ribonuclease A. Journal of Molecular Biology 264: 10281043.
[10]Chen, C. Z., and Shapiro, R. 1997. Site-specific mutagenesis reveals differences in the structural bases for tight binding of RNase inhibitor to angiogenin and RNase A. Proceedings of the National Academy of Sciences of the United States of America 94: 17611766.
[11]Dolinsky, T. J., Nielsen, J. E., McCammon, J. A., and Baker, N. A. 2004. PDB2PQR: An automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Research 32: W665W667.
[12]Case, D. A., Darden, T. A., Cheatham, T. E. III, Simmerling, C. L., Wang, J., Duke, R. E., Luo, R., Crowley, M., Walker, R.C., Zhang, W., Merz, K.M., Wang, B., Hayik, S., Roitberg, A., Seabra, G., Kolossváry, I., Wong, K. F., Paesani, F., Vanicek, J., Wu, X., Brozell, S. R., Steinbrecher, T., Gohlke, H., Yang, L., Tan, C., Mongan, J., Hornak, V., Cui, G., Mathews, D. H., Seetin, M.G., Sagui, C., Babin, V., and Kollman, P.A. 2008. AMBER 10. University of California, San Francisco.
[13]Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M., Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W., and Kollman, P. A. 1995. A 2nd generation force-field for the simulation of proteins, nucleic-acids and organic molecules. Journal of the American Chemical Society 117: 51795197.
[14]Tsui, V., and Case, D. A. 2001. Theory and applications of the Generalized Born solvation model in macromolecular simulations. Biopolymers 56: 275291.
[15]Onufriev, A., Bashford, D., and Case, D. A. 2004. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure, Function, and Bioinformatics 55: 383394.
[16]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2007. Unravelling Hot Spots: A comprehensive computational mutagenesis study. Theoretical Chemistry Accounts 117: 99113.
[17]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2007. Computational alanine scanning mutagenesis – An improved methodological approach. Journal of Computational Chemistry 28: 644654.
[18]Izaguirre, J. A. 2001. Langevin stabilization of molecular dynamics. Journal of Chemical Physics 114: 20902098.
[19]Loncharich, R. J., Brooks, B. R., and Pastor, R. W. 1992. Langevin dynamics of peptides-the frictional dependence of isomerization rates of n-acetylalanyl-n-methylamide Biopolymers 32: 523535.
[20]Darden, T., York, D., and Pedersen, L. 1993. Particle mesh Ewald- an n.log(n) method for ewald sums in large systems. Journal of Chemical Physics 98: 1008910092.
[21]Ryckaert, J. P., Ciccotti, G., and Berendsen, H. J. C. 1977. Numerical integration of cartesian equations of motion of a system with constraints-molecular dynamics of n-alkanes. Journal of Computational Physics 23: 327341.
[22]Huo, S., Massova, I., and Kollman, P. A. 2002. Computational alanine scanning of the 1 : 1 human growth hormone-receptor complex. Journal of Computational Chemistry 23: 1527.
[23]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2006. Detailed microscopic study of the full ZipA: FtsZ interface. Proteins-Structure Function and Bioinformatics 63: 811821.
[24]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2006. Unraveling the importance of protein-protein interaction: Application of a computational alanine-scanning mutagenesis to the study of the IgG1 streptococcal protein G (C2 fragment) complex. Journal of Physical ChemistryB 110: 1096210969.
[25]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2007. Hot spot computational identification: Application to the complex formed between the hen egg white lysozyme (HEL) and the antibody HyHEL-10. International Journal of Quantum Chemistry 107: 299310.
[26]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2007. Backbone importance for protein-protein binding. Journal of Chemical Theory and Computation 3: 885893.
[27]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2007. Hot spot occlusion from bulk water: A comprehensive study of the complex between the lysozyme HEL and the antibody FVD1.3. Journal of Physical Chemistry B 111: 26972706.
[28]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2008. Protein-protein recognition: A computational mutagenesis study of the MDM2-P53 complex. Theoretical Chemistry Accounts 120: 533542.
[29]Chong, L. T., Duan, Y., Wang, L., Massova, I., and Kollman, P. A. 1999. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proceedings of the National Academy of Sciences of the United States of America 96: 1433014335.
[30]Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S. H., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., and Cheatham, T. E. 2000. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research 33: 889897.
[31]Bradshaw, R. T., Patel, B. H., Tate, E. W., Leatherbarrow, R. J., and Gould, I. R. 2011. Comparing experimental and computational alanine scanning techniques for probing a prototypical protein-protein interaction. Protein Engineering Design & Selection 24: 197207.
[32]Rocchia, W., Alexov, E., and Honig, B. 2001. Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions. Journal of Physical Chemistry B 105: 65076514.
[33]Rocchia, W., Sridharan, S., Nicholls, A., Alexov, E., Chiabrera, A., and Honig, B. 2002. Rapid grid-based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects. Journal of Computational Chemistry 23: 128137.
[34]Moreira, I. S., Fernandes, P. A., and Ramos, M. J. 2005. Accuracy of the numerical solution of the Poisson-Boltzmann equation. Journal of Molecular Structure-Theochem 729: 1118.
[35]Sitkoff, D., Sharp, K. A., and Honig, B. 1994. Accurate calculation of hydration free-energies using macroscopic solvent models Journal of Physical Chemistry 98: 19781988.
[36]Connolly, M. L. 1983. Analytical molecular surface calculation J. Appl. Crystallogr. 16: 548558.
[37]Humphrey, W., Dalke, A., and Schulten, K. 1996. VMD: Visual molecular dynamics. Journal of Molecular Graphics 14: 338, 278.
[38]Cho, K.-I., Kim, D., and Lee, D. 2009. A feature-based approach to modeling proteinprotein interaction hot spots. Nucleic Acids Research 37: 26722687.
[39]Miller, S., Janin, J., Lesk, A. M., and Chothia, C. 1987. Interior and surface of monomeric proteins. Journal of Molecular Biology 196: 641656.
[40]Miller, S., Lesk, A. M., Janin, J., and Chothia, C. 1987. The accessible surface-area and stability of oligomeric proteins. Nature 328: 834836.
[41]Tuncbag, N., Gursoy, A., and Keskin, O. 2009. Identification of computational hot spots in protein interfaces: Combining solvent accessibility and inter-residue potentials improves the accuracy. Bioinformatics 25: 15131520.
[42]Xia, J. F., Zhao, X. M., Song, J. N., and Huang, D. S. 2010. APIS: Accurate prediction of hot spots in protein interfaces by combining protrusion index with solvent accessibility. BMC Bioinformatics 11: 174.
[43]Darnell, S. J., LeGault, L., and Mitchell, J. C. 2008. KFC Server: Interactive forecasting of protein interaction hot spots. Nucleic Acids Research 36: W265W269.
[44]Darnell, S. J., Page, D., and Mitchell, J. C. 2007. An automated decision-tree approach to predicting protein interaction hot spots. Proteins-Structure Function and Bioinformatics 68: 813823.
[45]Liu, Q. A., and Li, J. Y. 2010. Protein binding hot spots and the residue-residue pairing preference: A water exclusion perspective. BMC Bioinformatics 11: 244.
[46]Cho, K. I., Kim, D., and Lee, D. 2009. A feature-based approach to modeling proteinprotein interaction hot spots. Nucleic Acids Research 37: 26722687.
[47]Guharoy, M., and Chakrabarti, P. 2009. Empirical estimation of the energetic contribution of individual interface residues in structures of protein-protein complexes. Journal of Computer-Aided Molecular Design 23: 645654.
[48]Keskin, O., Ma, B. Y., and Nussinov, R. 2005. Hot regions in protein-protein interactions: The organization and contribution of structurally conserved hot spot residues. Journal of Molecular Biology 345: 12811294.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Communications in Computational Physics
  • ISSN: 1815-2406
  • EISSN: 1991-7120
  • URL: /core/journals/communications-in-computational-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed