[1]
National Research Council, Plasma science: advancing knowledge in the national interest. National Academies Press (2008).
[2]
Chen, F. F., Introduction to plasma physics and controlled fusion. Plenum Press, New York and London, 2nd edition (1974).
[3]
Vahedi, V. and Surendra, M., “A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges,” Comput. Phys. Commun., vol. 87 (1995), no. 1, pp. 179–198.
[4]
Filbet, F. and Sonnendrücker, E., “Comparison of Eulerian Vlasov solvers,” Comput. Phys. Commun., vol. 150 (2003), no. 3, pp. 247–266.
[5]
Filbet, F., Sonnendrücker, E., and Bertrand, P., “Conservative numerical schemes for the Vlasov equation,” J. Comput. Phys., vol. 172 (2001), no. 1, pp. 166–187.
[6]
Degon, P., Deluzet, F., Navoret, F., and Sun, A.B., “Asymptotic-preserving particle-in-cell method for the VlasovCPoisson system near quasineutrality,” J. Comput. Phys., vol. 229 (2010), no. 1, pp. 5630–5652.
[7]
Degon, P., Deluzet, F., Navoret, F., and Sun, A.B., “Asymptotic-preserving particle-in-cell method for the VlasovCMaxwell systemin the quasi-neutral limit,” J. Comput. Phys., vol. 330 (2017), no. 1, pp. 467–492.
[8]
Degon, P., Deluzet, F., “Asymptotic-Preserving methods and multiscale models for plasma physics,” arXiv preprint, (2016).
[9]
Qiu, J.-M. and Shu, C.-W., “Conservative semi-Lagrangian finite difference WENO formulations with applications to the Vlasov equation,” Commun. Comput. Phys., vol. 10 (2011), no. 4, p. 979.
[10]
Guo, W. and Qiu, J.-M., “Hybrid semi-Lagrangian finite element-finite differencemethods for the Vlasov equation,” J. Comput. Phys., vol. 234 (2013), pp. 108–132.
[11]
Xiong, T., Qiu, J.-M., Xu, Z., and Christlieb, A., “High order maximum principle preserving semi-Lagrangian finite differenceWENO schemes for the Vlasov equation,” J. Comput. Phys., vol. 273 (2014), pp. 618–639.
[12]
Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., and De Zeeuw, D. L., “A solution-adaptive upwind scheme for ideal magnetohydrodynamics,” J. Comput. Phys., vol. 154 (1999), no. 2, pp. 284–309.
[13]
Brio, M. and Wu, C. C., “An upwind differencing scheme for the equations of ideal magnetohydrodynamics,” J. Comput. Phys., vol. 75 (1988), no. 2, pp. 400–422.
[14]
Xu, K., “Gas-kinetic theory-based flux splitting method for ideal magnetohydrodynamics,” J. Comput. Phys., vol. 153 (1999), no. 2, pp. 334–352.
[15]
Araya, D. B., Ebersohn, F. H., Anderson, S. E., and Girimaji, S. S., “Magneto-gas kineticmethod for nonideal magnetohydrodynamics flows: verification protocol and plasma jet simulations,” J. Fluids Eng., vol. 137 (2015), no. 8, p. 081302.
[16]
Shumlak, U. and Loverich, J., “Approximate Riemann solver for the two-fluid plasma model,” J. Comput. Phys., vol. 187 (2003), no. 2, pp. 620–638.
[17]
Hakim, A., Loverich, J., and Shumlak, U., “A high resolution wave propagation scheme for ideal two-fluid plasma equations,” J. Comput. Phys., vol. 219 (2006), no. 1, pp. 418–442.
[18]
Loverich, J. and Shumlak, U., “Adiscontinuous Galerkinmethod for the full two-fluid plasma model,” J. Comput. Phys., vol. 169 (2005), no. 1, pp. 251–255.
[19]
Loverich, J., Hakim, A., and Shumlak, U., “A discontinuous Galerkin method for ideal twofluid plasma equations,” J. Comput. Phys., vol. 9 (2011), no. 02, pp. 240–268.
[20]
Srinivasan, B. and Shumlak, U., “Analytical and computational study of the ideal full twofluid plasma model and asymptotic approximations for Hall-magnetohydrodynamics,” Phys. Plasmas, vol. 18 (2011), no. 9, p. 092113.
[21]
Crestetto, A., Crouseilles, N., and Lemou, M., “Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles,” Kin. Rel. Mod., vol. 5 (2012), no. 4, pp. 787–816.
[22]
Dimarco, G., Mieussens, L., and Rispoli, V., “An asymptotic preserving automatic domain decomposition method for the Vlasov-Poisson-BGK system with applications to plasmas,” J. Comput. Phys., vol. 274 (2014), pp. 122–139.
[23]
Jin, S. and Yan, B., “A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation,” J. Comput. Phys., vol. 230 (2011), no. 17, pp. 6420–6437.
[24]
Dimarco, G., Li, Q., Pareschi, L., and Yan, B., “Numerical methods for plasma physics in collisional regimes,” J. Plasma Phys., vol. 81 (2015), no. 1, 305810106
[25]
Degond, P., Deluzet, F., Navoret, L., Sun, A.-B., and Vignal, M.-H., “Asymptotic-preserving particle-in-cell method for the Vlasov–Poisson system near quasineutrality,” J. Comput. Phys., vol. 229 (2010), no. 16, pp. 5630–5652.
[26]
Xu, K. and Huang, J., “A unified gas-kinetic scheme for continuum and rarefied flows,” J. Comput. Phys., vol. 229 (2010), no. 20, pp. 7747–7764.
[27]
Huang, J., Xu, K., and Yu, P., “A unified gas-kinetic scheme for continuum and rarefied flows II: Multi-dimensional cases,” Commun. Comput. Phys., vol. 12 (2012), no. 3, pp. 662–690.
[28]
Huang, J., Xu, K., and Yu, P., “A unified gas-kinetic scheme for continuum and rarefied flows III: Microflow simulations,” Commun. Comput. Phys., vol. 14 (2013), no. 5, pp. 1147–1173.
[29]
Sun, W., Jiang, S., and Xu, K., “An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations,” J. Comput. Phys., vol. 285 (2015), pp. 265–279.
[30]
Sun, W., Jiang, S., Xu, K., and Li, S., “An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations,” J. Comput. Phys., vol. 302 (2015), pp. 222–238.
[31]
Guo, Z. and Xu, K., “Discrete unified gas kinetic scheme for multiscale heat transfer based on the phonon Boltzmann transport equation,” Int. J. Heat Mass, vol. 102 (2016), pp. 944–958.
[32]
Xu, K., “Direct modeling for computational fluid dynamics: construction and application of unified gas-kinetic schemes,” World Scientific, Singapore (2015).
[33]
Andries, P., Aoki, K., and Perthame, B., “A consistent BGK-type model for gas mixtures,” J. Stat. Phys., vol. 106 (2002), no. 5-6, pp. 993–1018.
[34]
Morse, T.F., “Energy and momentum exchange between nonequipartition gases,” Phys. Fluids, vol. 6 (1963), no. 10, pp. 1420–1427.
[35]
Liu, C., Xu, K., Sun, Q., and Cai, Q., “A unified gas-kinetic scheme for continuum and rarefied flows IV: full Boltzmann andmodel equations,” J. Comput. Phys., vol. 314 (2016), pp. 305–340.
[36]
Munz, C.-D., Omnes, P., Schneider, R., Sonnendrücker, E., and Voss, U., “Divergence correction techniques for Maxwell solvers based on a hyperbolic model,” J. Comput. Phys., vol. 161 (2000), no. 2, pp. 484–511.
[37]
LeVeque, R.J., “ Finite volume methods for hyperbolic problems,” Cambridge university press (2002).
[38]
Orszag, S. A. and Tang, C.-M., “Small-scale structure of two-dimensional magnetohydrodynamic turbulence,” J. Fluid Mech., vol. 90 (1979), no. 01, pp. 129–143.
[39]
Tang, H.-Z. and Xu, K., “A high-order gas-kinetic method for multidimensional ideal magnetohydrodynamics,” J. Comput. Phys., vol. 165 (2000), no. 1, pp. 69–88.
[40]
Parker, E.N., “Sweet's mechanism for merging magnetic fields in conducting fluids,” J. Geophys. Res., vol. 62 (1957), no. 4, pp. 509–520.
[41]
Birn, J., Drake, J., Shay, M., Rogers, B., Denton, R., Hesse, M., Kuznetsova, M., Ma, Z., Bhattacharjee, A., Otto, A., et al., “Geospace environmental modeling (GEM) magnetic reconnection challenge,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3715–3719.
[42]
Hesse, M., Birn, J., and Kuznetsova, M., “Collisionless magnetic reconnection: Electron processes and transportmodeling,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3721–3735.
[43]
Birn, J. and Hesse, M., “Geospace environment modeling (GEM) magnetic reconnection challenge: Resistive tearing, anisotropic pressure and hall effects,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3737–3750.
[44]
Ma, Z. and Bhattacharjee, A., “Hallmagnetohydrodynamic reconnection: The geospace environment modeling challenge,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3773–3782.
[45]
Pritchett, P., “Geospace environment modeling magnetic reconnection challenge: Simulations with a full particle electromagnetic code,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3783–3798.
[46]
Kuznetsova, M. M., Hesse, M., and Winske, D., “Collisionless reconnection supported by nongyrotropic pressure effects in hybrid and particle simulations,” J. Geophys. Res.-Space, vol. 106 (2001), no. A3, pp. 3799–3810.