Skip to main content Accessibility help
×
Home

Validation of Pore-Scale Simulations of Hydrodynamic Dispersion in Random Sphere Packings

  • Siarhei Khirevich (a1), Alexandra Höltzel (a1) and Ulrich Tallarek (a1)

Abstract

We employ the lattice Boltzmann method and random walk particle tracking to simulate the time evolution of hydrodynamic dispersion in bulk, random, monodisperse, hard-sphere packings with bed porosities (interparticle void volume fractions) between the random-close and the random-loose packing limit. Using Jodrey-Tory and Monte Carlo-based algorithms and a systematic variation of the packing protocols we generate a portfolio of packings, whose microstructures differ in their degree of heterogeneity (DoH). Because the DoH quantifies the heterogeneity of the void space distribution in a packing, the asymptotic longitudinal dispersion coefficient calculated for the packings increases with the packings’ DoH. We investigate the influence of packing length (up to 150 dp, where dp is the sphere diameter) and grid resolution (up to 90 nodes per dp) on the simulated hydrodynamic dispersion coefficient, and demonstrate that the chosen packing dimensions of 10 dpx 10 dpx 70 dp and the employed grid resolution of 60 nodes per dp are sufficient to observe asymptotic behavior of the dispersion coefficient and to minimize finite size effects. Asymptotic values of the dispersion coefficients calculated for the generated packings are compared with simulated as well as experimental data from the literature and yield good to excellent agreement.

Copyright

Corresponding author

References

Hide All
[1]Bear, J., Dynamics of fluids in porous media, Dover Publications, 1988.
[2]Dullien, F. A. L., Porous media: fluid transport and pore structure, 2 ed., Academic Press, 1992.
[3]Aste, T., Saadatfar, M., and Senden, T. J., Geometrical structure of disordered sphere packings, Phys. Rev. E, 71 (2005), 061302.
[4]Mizutani, R., Takeuchi, A., Osamura, R. Y., Takekoshi, S., Uesugi, K. and Suzuki, Y., Submi-crometer tomographic resolution examined using a micro-fabricated test object, Micron, 41 (2010), 9095.
[5]Piller, M., Schena, G., Nolich, M., Favretto, S., Radaelli, F. and Rossi, E., Analysis of hydraulic permeability in porous media: from high resolution X-ray tomography to direct numerical simulation, Transp. Porous Media, 80 (2009), 5778.
[6]Manz, B., Gladden, L. F. and Warren, P. B., Flow and dispersion in porous media: lattice-Boltzmann and NMR studies, AIChE J., 45 (1999), 18451854.
[7]Bruns, S., Mullner, T., Kollmann, M., Schachtner, J., Holtzel, A. and Tallarek, U., Confocal laser scanning microscopy method for quantitative characterization of silica monolith morphology, Anal. Chem., 82 (2010), 65696575.
[8]Bruns, S. and Tallarek, U., Physical reconstruction of packed beds and their morphological analysis: core-shell packings as an example, J. Chromatogr. A, 1218 (2011), 18491860.
[9]Khirevich, S., Daneyko, A., Höltzel, A., Seidel-Morgenstern, A. and Tallarek, U., Statistical anal-ysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion, J. Chromatogr. A, 1217 (2010), 47134722.
[10]Khirevich, S., Höltzel, A., Daneyko, A., Seidel-Morgenstern, A. and Tallarek, U., Structure-transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings, J. Chromatogr. A, 1218 (2011), 64896497.
[11]Daneyko, A., Höltzel, A., Khirevich, S. and Tallarek, U., Influence of the particle size distribution on hydraulic permeability and eddy dispersion in bulk packings, Anal. Chem., 83 (2011), 39033910.
[12]Giddings, J. C., ‘Eddy’ diffusion in chromatography, Nature, 184 (1959), 357358.
[13]Schenker, I., Filser, F. T., Gauckler, L.J., Aste, T. and Herrmann, H. J., Quantification of the heterogeneity of particle packings, Phys. Rev. E, 80 (2009), 021302.
[14]Jodrey, W. S. and Tory, E. M., E. M., Computer simulation of close random packing of equal spheres, Phys. Rev. A, 32 (1985), 23472351.
[15]Allen, M. P. and Tildesley, D. J., Computer simulation of liquids, Oxford University Press, 1989.
[16]Zinchenko, A. Z., Algorithm for random close packing of spheres with periodic boundary conditions, J. Comput. Phys., 114 (1994), 298307.
[17]Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N., Spatial tessellations: concepts and applications of Voronoi diagrams, 2 ed., John Wiley & Sons, 2000.
[18]Succi, S., The lattice Boltzmann equation for fluid dynamics and beyond, Oxford University Press, 2001.
[19]Pan, C., Luo, L.-S., and Miller, C. T., An evaluation of lattice Boltzmann schemes for porous medium flow simulation, Comput. Fluids, 35 (2006), 898909.
[20]Ginzbourg, I. and Adler, P. M., Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J. Phys. II, 4 (1994), 191214.
[21]Guo, Z., Zheng, C. and Shi, B., Discrete lattice effects on the forcing term in the lattice Boltz-mann method, Phys. Rev. E, 65 (2002), 046308.
[22]Tikhonov, A. N. and Samarskii, A. A., Equations of mathematical physics, Dover Publications, 1990.
[23]Zienkiewicz, O. C., Nithiarasu, P. and Taylor, R. L., The finite element method for fluid dynamics, Elsevier Butterworth-Heinemann, 2005.
[24]Devkota, B. H. and Imberger, J., Lagrangian modeling of advection-diffusion transport in open channel flow, Water Resour. Res., 45 (2009), W12406.
[25]Lin, B. and Falconer, R. A., Tidal flow and transport modeling using ULTIMATE QUICKEST scheme, J. Hydraul. Eng., 123 (1997), 303314.
[26]Leonard, B. P., The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection, Comput. Methods Appl. Mech. Eng., 88 (1991), 1774.
[27]Hassan, A. E. and Mohamed, M. M., On using particle tracking methods to simulate transport in single-continuum and dual continua porous media, J. Hydrol., 275 (2003), 242260.
[28]Khirevich, S., Holtzel, A., Seidel-Morgenstern, A. and Tallarek, U., Time and length scales of eddy dispersion in chromatographic beds, Anal. Chem., 81 (2009), 70577066.
[29]Salamon, P., Fernandez-Garcia, D. and Gomez-Hernandez, J. J., Modeling tracer transport at the MADE site: the importance of heterogeneity, Water Resour. Res., 43 (2007), W08404.
[30]Rudnick, J. A. and Gaspari, G. D., Elements of the random walk: an introduction for advanced students and researchers, Cambridge University Press, 2004.
[31]Delay, F., Ackerer, P. and Danquigny, C., Simulating solute transport in porous or fractured formations using random walk particle tracking: a review, Vadose Zone J., 4 (2005), 360379.
[32]Salamon, P., Fernàndez-Garcia, D. and Gomez-Hernandez, J. J., J., J., A review and numerical assessment of the random walk particle tracking method, J. Contam. Hydrol., 87 (2006), 277305.
[33]Maier, R. S., Kroll, D. M., Bernard, R. S., Howington, S. E., Peters, J. F. and Davis, H. T., Pore-scale simulation of dispersion, Phys. Fluids, 12 (2000), 20652079.
[34]Freund, H., Bauer, J., Zeiser, T. and Emig, G., Detailed simulation of transport processes in fixed-beds, Ind. Eng. Chem. Res., 44 (2005), 64236434.
[35]Kloeden, P. E. and Platen, E., Numerical solution of stochastic differential equations, Springer-Verlag, 1995.
[36]Szymczak, P. and Ladd, A. J. C., Boundary conditions for stochastic solutions of the convection-diffusion equation, Phys. Rev. E, 68 (2003), 036704.
[37]Israelsson, P. H., Kim, Y. D. and Adams, E. E., A comparison of three Lagrangian approaches for extending near field mixing calculations, Environ. Modell. Software, 21 (2006), 16311649.
[38]Khirevich, S., High-performance computing of flow, diffusion, and hydrodynamic dispersion in random sphere packings, PhD thesis, Philipps University of Marburg, Germany, 2010.
[39]Khirevich, S., Daneyko, A. and Tallarek, U., Simulation of fluid flow and mass transport at extreme scale, Technical Report FZJ-JSC-IB-2010-03, Forschungszentrum Julich, Julich Supercomputing Centre, 2010.
[40]Brenner, H., Dispersion resulting from flow through spatially periodic porous media, Philos. Trans. R. Soc. A, 297 (1980), 81133.
[41]Hlushkou, D. and Tallarek, U., Transition from creeping via viscous-inertial to turbulent flow in fixed beds, J. Chromatogr. A, 1126 (2006), 7085.
[42]Giddings, J. C., Dynamics of chromatography: principles and theory, Marcel Dekker, 1965.
[43]Schure, M. R., Maier, R. S., Kroll, D. M. and Davis, H. T., Simulation of packed-bed chromatog-raphy utilizing high-resolution flow fields: comparison with models, Anal. Chem., 74 (2002), 60066016.
[44]Taylor, G., Dispersion of soluble matter in solvent flowing slowly through a tube, Philos. Trans. R. Soc. A, 219 (1953), 186203.
[45]Aris, R., On the dispersion of a solute in a fluid flowing through a tube, Philos. Trans. R. Soc. A, 235 (1956), 6777.
[46]Dutta, D., Ramachandran, A. and Leighton, D. T., Effect of channel geometry on solute dispersion in pressure-driven microfluidic systems, Microfluid. Nanofluid., 2 (2006), 275290.
[47]Lowe, C. P. and Frenkel, D., Do hydrodynamic dispersion coefficients exist?, Phys. Rev. Lett., 77 (1996), 45524555.
[48]Maier, R. S. and Bernard, R. S., Lattice-Boltzmann accuracy in pore-scale flow simulation, J. Comput. Phys., 229 (2010), 233255.
[49]Koch, D. L., Hill, R. J. and Sangani, A. S., Brinkman screening and the covariance of the fluid velocity in fixed beds, Phys. Fluids, 10 (1998), 30353037.
[50]Frenkel, D. and Ernst, M. H., Simulation of diffusion in a two-dimensional lattice-gas cellular automaton: a test of mode-coupling theory, Phys. Rev. Lett., 63 (1989), 21652168.
[51]Merks, R. H. M., Hoekstra, A. G. and Sloot, P. M. A., The moment propagation method for advection-diffusion in the lattice Boltzmann method: validation and Peclet number limits, J. Comput. Phys., 183 (2002), 563576.
[52]Maier, R. S., Schure, M. R., Gage, J. P. and Seymour, J. D., Sensitivity of pore-scale dispersion to the construction of random bead packs, Water Resour. Res., 44 (2008), W06S03.
[53]Seymour, J. D. and Callaghan, P. T., Generalized approach to NMR analysis of flow and dis-persion in porous media, AIChE J., 43 (1997), 20962111.
[54]Augier, F., Idoux, F. and Delenne, J. Y., Numerical simulations of transfer and transport properties inside packed beds of spherical particles, Chem. Eng. Sci., 65 (2010), 10551064.
[55]Scheven, U. M., Harris, R. and Johns, M. L., Intrinsic dispersivity of randomly packed mono-disperse spheres, Phys. Rev. Lett., 99 (2007), 054502.
[56]Sahimi, M., Flow and transport in porous media and fractured rock: from classical methods to modern approaches, Wiley-VCH, 1995.
[57]Maier, R. S., Kroll, D. M. and Davis, H. T., Diameter-dependent dispersion in packed cylinders, AIChE J., 53 (2007), 527530.
[58]Cundall, P. A. and Strack, O. D. L., A discrete numerical model for granular assemblies, Geotechnique, 29 (1979), 4765.
[59]Scheven, U. M., Dispersion in non-ideal packed beds, AIChE J., 56 (2010), 289297.
[60]Saffman, P. G., A theory of dispersion in a porous medium, J. Fluid Mech., 6 (1959), 321349.
[61]Saffman, P. G., Dispersion due to molecular diffusion and macroscopic mixing in flow through a network of capillaries, J. Fluid Mech., 7 (1960), 194208.
[62]Kuttanikkad, S. P., Pore-scale direct numerical simulation of flow and transport in porous media, PhD thesis, Ruprecht Karls University of Heidelberg, Germany, 2009.

Keywords

Related content

Powered by UNSILO

Validation of Pore-Scale Simulations of Hydrodynamic Dispersion in Random Sphere Packings

  • Siarhei Khirevich (a1), Alexandra Höltzel (a1) and Ulrich Tallarek (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.