Hostname: page-component-5b777bbd6c-7sgmh Total loading time: 0 Render date: 2025-06-18T06:12:06.925Z Has data issue: false hasContentIssue false

Safeguarding Patients with End-Stage Kidney Disease From Climate-driven Extreme Heat and Hurricanes

Published online by Cambridge University Press:  18 September 2024

Rebecca L. Shakour
Affiliation:
University of Miami, Miller School of Medicine, Miami, Florida, USA
Zain Mithani
Affiliation:
Katz Family Division of Nephrology and Hypertension, University of Miami, Miller School of Medicine, USA
Jeffrey B. Kopp
Affiliation:
Kidney Disease Section, Center Drive, Bethesda, MD, USA
J. Marshall Shepherd
Affiliation:
UGA Atmospheric Sciences Program, University of Georgia, Athens, Georgia, USA Institute for Resilient Infrastructure Systems, Athens, Georgia, USA
Leticia M. Nogueira
Affiliation:
Health Services Research, American Cancer Society Inc., Chastain Meadows, Kennesaw, GA, USA
Zelde Espinel
Affiliation:
Department of Psychiatry and Behavioral Sciences, Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, Florida, USA
James M. Shultz*
Affiliation:
Protect and Promote Population Health in Complex Crises, DEEP Center, Center for Disaster and Extreme Event Preparedness, USA Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, Florida, USA
*
Corresponding author: James M. Shultz; Email: jshultz1@med.miami.edu

Abstract

5wPatients with end stage kidney disease (ESKD) who receive in-center hemodialysis are disproportionately vulnerable to extreme weather events, including hurricanes and heat waves, that may disrupt access to healthcare providers, and life-sustaining treatments. This current era of climate-driven compounding disasters is progressively elevating the level of threat to the health and well-being of patients with ESKD. This analysis brings together multi-disciplinary expertise to explore the contours of this increasingly complex risk landscape. Despite the challenges, important advances have been made for safeguarding this medically high-risk patient population. Hemodialysis services providers have devised innovative systems for preparing their patients and sustaining, or rapidly reestablishing, hemodialysis services in the aftermath of a disaster, and maintaining open lines of communication with their caseloads of ESKD patients throughout all phases of the event. A description of lessons learned along the path towards improved patient support in disasters, is provided. The article concludes with a detailed case example, describing dialysis providers’ effective response throughout Hurricane Ian’s passage across the State of Florida in 2022. Based on lessons learned, this analysis outlines strategies for protecting patients with ESKD that may be adapted for future climate-potentiated disaster scenarios.

Type
Original Research
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Kalantar-Zadeh, K, Jafar, TH, Nitsch, D, et al. Chronic kidney disease. Lancet. 2021;398(10302):786802. doi:10.1016/S0140-6736(21)00519-5CrossRefGoogle ScholarPubMed
GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395(10225):709733. doi:10.1016/S0140-6736(20)30045-3CrossRefGoogle Scholar
Lv, JC, Zhang, LX. Prevalence and disease burden of chronic kidney disease. Adv Exp Med Biol. 2019;1165:315. doi:10.1007/978-981-13-8871-2_1CrossRefGoogle ScholarPubMed
Smith, RS, Zucker, RJ, Frasso, R. Natural disasters in the Americas, dialysis patients, and implications for emergency planning: a systematic review. Prev Chronic Dis. 2020;17:E42. doi:10.5888/pcd17.190430CrossRefGoogle ScholarPubMed
Kopp, JB, Ball, LK, Cohen, A, et al. Kidney patient care in disasters: emergency planning for patients and dialysis facilitiesClin J Am Soc Nephrol. 2007;2(4):825838. doi:10.2215/CJN.01220307CrossRefGoogle ScholarPubMed
Kopp, JB, Ball, LK, Cohen, A, et al. Kidney patient care in disasters: lessons from the hurricanes and earthquake of 2005Clin J Am Soc Nephrol. 2007;2(4):814824. doi:10.2215/CJN.03481006CrossRefGoogle ScholarPubMed
Blum, MF, Feng, Y, Anderson, GB, et al. Hurricanes and mortality among patients receiving dialysis. J Am Soc Nephrol. 2022;ASN.2021111520. doi:10.1681/ASN.2021111520CrossRefGoogle ScholarPubMed
United States Renal Data System (USRDS). 2021 United States Renal Data System Annual Data Report (ADR). https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease. Accessed September 4, 2023.Google Scholar
Al Salmi, I, Larkina, M, Wang, M, et al. Missed hemodialysis treatments: international variation, predictors, and outcomes in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis. 2018;72(5):634643. doi:10.1053/j.ajkd.2018.04.019CrossRefGoogle ScholarPubMed
Chan, KE, Thadhani, RI, Maddux, FW. Adherence barriers to chronic dialysis in the United States. J Am Soc Nephrol. 2014;25(11):26422648. doi:10.1681/ASN.2013111160CrossRefGoogle ScholarPubMed
Obialo, CI, Hunt, WC, Bashir, K, et al. Relationship of missed and shortened hemodialysis treatments to hospitalization and mortality: observations from a US dialysis network. Clin Kidney J. 2012;5(4):315319. doi:10.1093/ckj/sfs071CrossRefGoogle ScholarPubMed
Saran, R, Bragg-Gresham, JL, Rayner, HC, et al. Non-adherence in hemodialysis: associations with mortality, hospitalization, and practice patterns in the DOPPS. Kidney Int. 2003;64(1):254262. doi:10.1046/j.1523-1755.2003.00064.xCrossRefGoogle Scholar
Fifth National Climate Assessment. Focus on compound events. https://nca2023.globalchange.gov/chapter/focus-on-1/#section-1. Accessed February10, 2024.Google Scholar
Perkins-Kirkpatrick, SE, Lewis, SC. Increasing trends in regional heatwavesNat Commun. 2020;11(1):3357. doi:10.1038/s41467-020-16970-7CrossRefGoogle ScholarPubMed
The Lancet. Health in a world of extreme heat. Lancet. 2021;398(10301):641. doi:10.1016/S0140-6736(21)01860-2CrossRefGoogle Scholar
Ebi, KL, Capon, A, Berry, P, et al. Hot weather, and heat extremes: health risks. Lancet. 2021;398(10301):698708. doi:10.1016/S0140-6736(21)01208-3CrossRefGoogle ScholarPubMed
Patel, L, Conlon, KC, Sorensen, C, et al. Climate change and extreme heat events: how health systems should prepare. NEJM Catalyst. 2022;3(7). doi:10.1056/cat.21.0454CrossRefGoogle Scholar
Sasai, F, Roncal-Jimenez, C, Rogers, K, et al. Climate change and nephrologyNephrol Dial Transplant. 2023;38(1):4148. doi:10.1093/ndt/gfab258CrossRefGoogle ScholarPubMed
Climate.gov. Climate change: global temperature. https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature. Accessed September 4, 2023.Google Scholar
Borg, M, Bi, P, Nitschke, M, et al. The impact of daily temperature on renal disease incidence: an ecological studyEnviron Health. 2017;16(1):114. doi:10.1186/s12940-017-0331-4CrossRefGoogle ScholarPubMed
Borg, MA, Bi, P. The impact of climate change on kidney healthNat Rev Nephrol. 2021;17(5):294295. doi:10.1038/s41581-020-00365-4CrossRefGoogle ScholarPubMed
Gallagher, A, Smyth, B, Jha, V. Climate change, heat-related acute kidney disease, and the need for action. Am J Kidney Dis. 2023;81(5):501503. doi:10.1053/j.ajkd.2022.11.002CrossRefGoogle ScholarPubMed
Coca, SG, Singanamala, S, Parikh, CR. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 2012;81(5):442448. doi:10.1038/ki.2011.379CrossRefGoogle ScholarPubMed
Sykes, L, Asar, O, Ritchie, J, et al. The influence of multiple episodes of acute kidney injury on survival and progression to end stage kidney disease in patients with chronic kidney disease. PLoS One. 2019;14(7):e0219828. doi:10.1371/journal.pone.0219828CrossRefGoogle ScholarPubMed
Liu, J, Varghese, BM, Hansen, A, et al. Hot weather as a risk factor for kidney disease outcomes: a systematic review and meta-analysis of epidemiological evidence. Sci Total Environ. 2021;801:149806. doi:10.1016/j.scitotenv.2021.149806CrossRefGoogle ScholarPubMed
Qu, Y, Zhang, W, Boutelle, AM, et al. Associations between ambient extreme heat exposure and emergency department visits related to kidney disease. Am J Kidney Dis. 2023;81(5):507516.e1. doi:10.1053/j.ajkd.2022.09.005CrossRefGoogle ScholarPubMed
Remigio, RV, Jiang, C, Raimann, J, et al. Association of extreme heat events with hospital admission or mortality among patients with end-stage renal disease. JAMA Netw Open. 2019;2(8):e198904. doi:10.1001/jamanetworkopen.2019.8904CrossRefGoogle ScholarPubMed
Remigio, RV, Turpin, R, Raimann, JG, et al. Assessing proximate intermediates between ambient temperature, hospital admissions, and mortality in hemodialysis patients. Environ Res. 2022;204(Pt B):112127. doi:10.1016/j.envres.2021.112127CrossRefGoogle ScholarPubMed
Sorensen, C, Garcia-Trabanino, R. A new era of climate medicine - Addressing heat-triggered renal disease. N Engl J Med. 2019;381(8):693696. doi:10.1056/NEJMp1907859CrossRefGoogle ScholarPubMed
Glaser, J, Lemery, J, Rajagopalan, B, et al. Climate change and the emergent epidemic of CKD from heat stress in rural communities: the case for heat stress nephropathy. Clin J Am Soc Nephrol. 2016;11(8):1472–83. doi:10.2215/CJN.13841215CrossRefGoogle ScholarPubMed
Johnson, RJ, Wesseling, C, Newman, LS. Chronic kidney disease of unknown cause in agricultural communities. N Engl J Med. 2019;380(19):18431852. doi:10.1056/NEJMra1813869CrossRefGoogle ScholarPubMed
Chapman, CL, Hess, HW, Lucas, RAI, et al. Occupational heat exposure and the risk of chronic kidney disease of non-traditional origin in the United States. Am J Physiol Regul Integr Comp Physiol. 2021;321(2):R141R151. doi:10.1152/ajpregu.00103.2021CrossRefGoogle Scholar
Intergovernmental Panel on Climate Change (IPCC). Synthesis report of the sixth assessment report: climate change 2023. https://www.ipcc.ch/ar6-syr/. Accessed July 1, 2023.Google Scholar
Knutson, TR, McBride, JL, Chan, J, et al. Tropical cyclones and climate change. Nat Geosci. 2010;3:157163. doi:10.1038/ngeo779CrossRefGoogle Scholar
Knutson, T, Camargo, SJ, Chan, JC, et al. Tropical cyclones and climate change assessment: Part I: Detection and Attribution. Bull Amer Meteor Soc. 2019;10(10):19872007. doi:10.1175/bams-d-18-0189.1CrossRefGoogle Scholar
Knutson, T, Camargo, SJ, Chan, JC, et al. Tropical cyclones and climate change assessment: part II: projected response to anthropogenic warming. Bulletin Am Met Soc. 2020;101(3):E303E322. doi:10.1175/bams-d-18-0194.1CrossRefGoogle Scholar
Emanuel, K. Atlantic tropical cyclones downscaled from climate re-analyses show increasing activity over past 150 years. Nat Commun. 2021;12(1):7027. doi:10.1038/s41467-021-27364-8CrossRefGoogle Scholar
Bhatia, K, Baker, A, Yang, W, et al. A potential explanation for the global increase in tropical cyclone rapid intensification. Nature Commun. 2022;13(1):6626. doi:10.1038/s41467-022-34321-6CrossRefGoogle ScholarPubMed
Kossin, JP, Knapp, KR, Olander, TL, et al. Global increase in major tropical cyclone exceedance probability over the past four decades. Proc Natl Acad Sci USA. 2020;117(22):1197511980. doi:10.1073/pnas.1920849117CrossRefGoogle ScholarPubMed
Emanuel, K. Evidence that hurricanes are getting strongerProc Natl Acad Sci USA. 2020;117(24):1319413195. doi:10.1073/pnas.2007742117CrossRefGoogle ScholarPubMed
Bhatia, KT, Vecchi, GA, Knutson, TR, et al. Recent increases in tropical cyclone intensification rates. Nat Commun. 2019;10(1):635. doi:10.1038/s41467-019-08471-zCrossRefGoogle ScholarPubMed
Sobel, AH, Camargo, SJ, Hall, TM, et al. Human influence on tropical cyclone intensityScience. 2016;353(6296):242246. doi:10.1126/science.aaf6574CrossRefGoogle ScholarPubMed
Holland, G, Bruyère, CL. Recent intense hurricane response to global climate change. Clim Dynamics. 2013;42:617627. doi:10.1007/s00382-013-1713-0CrossRefGoogle Scholar
Elsner, JB, Kossin, JP, Jagger, TH. The increasing intensity of the strongest tropical cyclones. Nature. 2008;455(7209):92–5. doi:10.1038/nature07234CrossRefGoogle ScholarPubMed
Risser, MD, Wehner, MF. Attributable human-induced changes in the likelihood and magnitude of the observed extreme precipitation during hurricane Harvey. Geophys Res Lett. 2017;44:(12):457–12,64. doi:10.1002/2017GL075888CrossRefGoogle Scholar
Shultz, JM, Kossin, J, Shepherd, JM, et al. Tropical cyclone impacts on island-based populations: the 2017 Atlantic hurricane basin’s perfect storm season. In: Shultz, JM, Rechkemmer, A eds. Oxford Handbook of Complex Disaster Risks and Resilience. New York: Oxford University Press (in press); 2017.Google Scholar
Shultz, JM, Kossin, JP, Shepherd, JM, et al. Risks, health consequences, and response challenges for small-island-based populations: observations from the 2017 Atlantic hurricane seasonDisaster Med Public Health Prep. 2019;13(1):517. doi:10.1017/dmp.2018.28CrossRefGoogle ScholarPubMed
Hall, TM, Kossin, JP. Hurricane stalling along the North American coast and implications for rainfallNPJ Clim Atmosph Sci. 2019;2(1). doi:10.1038/s41612-019-0074-8.Google Scholar
Kossin, JP. A global slowdown of tropical-cyclone translation speed. Nature. 2018;558(7708):104107. doi:10.1038/s41586-018-0158-3CrossRefGoogle ScholarPubMed
Li, L, Chakraborty, P. Slower decay of landfalling hurricanes in a warming world. Nature. 2020;587(7833):230234. doi:10.1038/s41586-020-2867-7CrossRefGoogle Scholar
Wang, S, Toumi, R. Recent migration of tropical cyclones toward coasts. Science. 2021;371(6528):514517. doi:10.1126/science.abb9038CrossRefGoogle ScholarPubMed
Zscheischler, J, Martius, O, Westra, S, et al. A typology of compound weather and climate events. Nat Rev Earth Environ. 2020;1:333347. doi:10.1038/s43017-020-0060-zCrossRefGoogle Scholar
Guido, Z, Allen, T, Mason, S, et al. Hurricanes, and anomalous heat in the Caribbean. Geophys Res Letters. 2022;49:e2022GL099740. doi:10.1029/2022GL099740CrossRefGoogle Scholar
Xi, D, Lin, N, Gori, A. Increasing sequential tropical cyclone hazards along the US East and Gulf coastsNat Clim Chang. 2023;13:258265. doi:10.1038/s41558-023-01595-7CrossRefGoogle Scholar
Matthews, T, Wilby, RL, Murphy, C. An emerging tropical cyclone–deadly heat compound hazard. Nat Clim Change. 2019;9:602606 doi:10.1038/s41558-019-0525-6CrossRefGoogle Scholar
Feng, K, Ouyang, M, Lin, N. Tropical cyclone-blackout-heatwave compound hazard resilience in a changing climate. Nat. Comm. 2022;13(1):4421. doi:10.1038/s41467-022-32018-4CrossRefGoogle Scholar
Gori, A, Lin, N, Xi, D. Tropical cyclone compound flood hazard assessment: from investigating drivers to quantifying extreme water levels. Earths Future. 2020:8(12):e2020EF001660. doi:10.1029/2020EF001660CrossRefGoogle Scholar
Gori, A, Lin, N, Xi, D, et al. Tropical cyclone climatology change greatly exacerbates US extreme rainfall–surge hazard. Nat Clim Change. 2022;12:171178. doi:10.1038/s41558-021-01272-7CrossRefGoogle Scholar
Marsooli, R, Lin, N, Emanuel, K, et al. Climate change exacerbates hurricane flood hazards along US Atlantic and Gulf Coasts in spatially varying patterns. Nat Commun. 2019;10(1):3785. doi:10.1038/s41467-019-11755-zCrossRefGoogle ScholarPubMed
Gray, NA, Wolley, M, Liew, A, et al. Natural disasters, and dialysis care in the Asia-Pacific. Nephrology (Carlton). 2015;20(12):873–80. doi:10.1111/nep.12522CrossRefGoogle ScholarPubMed
Johnson, RJ, Stenvinkel, P, Jensen, T, et al. Metabolic and kidney diseases in the setting of climate change, water shortage, and survival factorsJ Am Soc Nephrol. 2016;27(8):22472256. doi:10.1681/ASN.2015121314CrossRefGoogle ScholarPubMed
Johnson, RJ, Sánchez-Lozada, LG, Newman, LS, et al. Climate change and the kidneyAnn Nutr Metab. 2019;74 Suppl 3:3844. doi:10.1159/000500344CrossRefGoogle ScholarPubMed
Anderson, AH, Cohen, AJ, Kutner, NG, et al. Missed dialysis sessions and hospitalization in hemodialysis patients after Hurricane KatrinaKidney Int. 2009;75(11):12021208. doi:10.1038/ki.2009.5CrossRefGoogle ScholarPubMed
Kleinpeter, MA. End-stage renal disease use in hurricane-prone areas: should nephrologists increase the utilization of peritoneal dialysis? Adv Chronic Kidney Dis. 2007;14(1):100104. doi:10.1053/j.ackd.2006.07.007CrossRefGoogle ScholarPubMed
Kleinpeter, MA. Disaster preparedness of dialysis patients for Hurricanes Gustav and Ike 2008Adv Perit Dial. 2009;25:6267.Google ScholarPubMed
Lempert, KD, Kopp, JB. Hurricane Sandy as a kidney failure disasterAm J Kidney Dis. 2013;61(6):865868. doi:10.1053/j.ajkd.2013.03.017CrossRefGoogle ScholarPubMed
Murakami, N, Siktel, HB, Lucido, D, et al. Disaster preparedness and awareness of patients on hemodialysis after Hurricane SandyClin J Am Soc Nephrol. 2015;10(8):13891396. doi:10.2215/CJN.10181014CrossRefGoogle ScholarPubMed
Barraclough, KA, Holt, SG, Agar, JW. Climate change and us: what nephrologists should knowNephrology (Carlton). 2015;20(10):760764. doi:10.1111/nep.12496CrossRefGoogle ScholarPubMed
Barraclough, KA, Blashki, GA, Holt, SG, et al. Climate change and kidney disease-threats and opportunitiesKidney Int. 2017;92(3):526530. doi:10.1016/j.kint.2017.03.047CrossRefGoogle ScholarPubMed
Shultz, JM, Trapido, EJ, Kossin, JP, et al. Hurricane Ida’s impact on Louisiana and Mississippi during the COVID-19 Delta surge: complex and compounding threats to population health. Lancet Reg Health Am. 2022;12:100286. doi:10.1016/j.lana.2022.100286Google ScholarPubMed
Phend, C. Hurricane Ida recovery could have been much worse for dialysis care —lessons learned after Hurricane Katrina helped, but infrastructure will be key from now on. MedPageToday. Published September 8, 2021. https://www.medpagetoday.com/nephrology/esrd/94405. Accessed February 10, 2024.Google Scholar
CMS.gov. Emergency preparedness for dialysis facilities: a guide for chronic dialysis facilities. https://www.cms.gov/medicare/end-stage-renal-disease/esrdnetworkorganizations/downloads/emergencypreparednessforfacilities2.pdf. Accessed February 10, 2024.Google Scholar
Hassan, AM, Nogueira, L, Lin, YL, et al. Impact of heatwaves on cancer care delivery: potential mechanisms, health equity concerns, and adaptation strategiesJ Clin Oncol. 2023;41(17):31043109. doi:10.1200/JCO.22.01951CrossRefGoogle ScholarPubMed