Skip to main content

A Posteriori Error Estimator for a Weak Galerkin Finite Element Solution of the Stokes Problem

  • Xiaobo Zheng (a1) and Xiaoping Xie (a1)

A robust residual-based a posteriori error estimator is proposed for a weak Galerkin finite element method for the Stokes problem in two and three dimensions. The estimator consists of two terms, where the first term characterises the difference between the L 2-projection of the velocity approximation on the element interfaces and the corresponding numerical trace, and the second is related to the jump of the velocity approximation between the adjacent elements. We show that the estimator is reliable and efficient through two estimates of global upper and global lower bounds, up to two data oscillation terms caused by the source term and the nonhomogeneous Dirichlet boundary condition. The estimator is also robust in the sense that the constant factors in the upper and lower bounds are independent of the viscosity coefficient. Numerical results are provided to verify the theoretical results.

Corresponding author
*Corresponding author. Email addresses: (X. Zheng), (X. Xie)
Hide All
[1] Bank R. E. and Welfert B. D., A posteriori error estimates for the Stokes equations: A comparison, Comp. Meth. Appl. Mech. Engg. 82, 323340 (1990).
[2] Bank R. E. and Welfert B. D., A posteriori error estimates for the Stokes problem, SIAM J. Num. An. 28, 591623 (1991).
[3] Carstensen C., Causin P. and Sacco R., A posteriori dual-mixed adaptive finite element error control for Lamand Stokes equations, Num. Mathematik 101, 309332 (2005).
[4] Carstensen C. and Funken S., A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems, Math. Comp. 70, 13531381 (2001).
[5] Chen G., Feng M. and Xie X., Robust globally divergence-free weak Galerkin methods for Stokes equations, J. Comput. Math. 34, 549572 (2016).
[6] Chen L., Wang J. and Ye X., A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Scientific Comp. 59, 496511 (2014).
[7] Congreve S., Houston P., Suli E. and Wihler T.P., Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems II: Strongly monotone quasi-Newtonian flows, IMA J. Num. Analysis 33, 13861415 (2013).
[8] Dari E., Durán E. and Padra C., Error estimators for nonconforming finite element approximations of the Stokes problem, Math. Comp. 64, 10171033 (1995).
[9] Dörfler W. and Ainsworth M., Reliable a posteriori error control for nonconforming finite element approximation of Stokes flow, Math. Comp. 74 15991619 (2005).
[10] Farhloul M., Nicaise S. and Paque L L., A posteriori error estimation for the dual mixed finite element method of the Stokes problem, C. R. Acad. Sci. Paris, Ser. I. 339, 513518 (2004).
[11] Hannukainen A., Stenberg R. and VohralŠk M., A unified framework for a posteriori error estimation for the Stokes problem, Num. Mathematik 122, 725769 (2012).
[12] Kay D. and Silvester D., A posteriori error estimation for stabilized mixed of the Stokes equations, SIAM J. Scientific Comp. 21, 13211336 (1999).
[13] Hosking R.J. and Dewar R.L., Fundamental Fluid Mechanics and Magnetohydrodynamics, Springer (2016).
[14] Houston P., Schotzau D. and Wihler T.P., hp-adaptive discontinuous Galerkin finite element methods for the Stokes proble, European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2004), Eds. Neittaanmaki P., Rossi P., Korotov S., Onate E., Periaux J. and Knorzer D., Jyvaskyla, 24-28 July 2004
[15] Mitchell W.F., A comparison of adaptive refinement techniques for elliptic problems, ACMTrans. Math. Software (TOMS) 15, 326347 (1989).
[16] Paul H., Schözau D. and Wihler T. P., Energy norm shape a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem, J. Scientific Comp. 22, 347370 (2005).
[17] Shi Z. and Wang M., Finite Element Methods. Science Press (2013).
[18] Verfürth R., A posteriori error estimators for the Stokes equations, J. Num. Mathematik, 55, 309325 (1989).
[19] Verfürth R., A posteriori error estimators for the Stokes equations II non-conforming discretizations, J. Num. Mathematik 60, 235249 (1991).
[20] Verfürth R., A Review of A posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley Teubner, Chichester and New York (1996).
[21] Wang J. and Ye X., A weak Galerkin finite element method for the Stokes equations, Adv. Comp. Math. 42, 120 (2015).
[22] Wang R., Wang X., Zhai Q. and Zhang R., A Weak Galerkin Finite Element Scheme for solving the stationary Stokes equations, J. Comp. Appl. Math. 302, 171185 (2016).
[23] Zheng X., Chen G. and Xie X., A divergence-free weak Galerkin method for quasi-Newtonian Stokes flows, Science China Math. 60, doi: 10.1007/s11425-016-0354-8 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 141 *
Loading metrics...

* Views captured on Cambridge Core between 7th September 2017 - 19th February 2018. This data will be updated every 24 hours.