Skip to main content
×
×
Home

An AMG Preconditioner for Solving the Navier-Stokes Equations with a Moving Mesh Finite Element Method

  • Yirong Wu (a1) and Heyu Wang (a1)
Abstract
Abstract

AMG preconditioners are typically designed for partial differential equation solvers and divergence-interpolation in a moving mesh strategy. Here we introduce an AMG preconditioner to solve the unsteady Navier-Stokes equations by a moving mesh finite element method. A 4P1 – P1 element pair is selected based on the data structure of the hierarchy geometry tree and two-layer nested meshes in the velocity and pressure. Numerical experiments show the efficiency of our approach.

Copyright
Corresponding author
*Corresponding author. Email addresses: 21106058@zju.edu.cn Y. Wu), wangheyu@zju.edu.cn (H. Wang)
References
Hide All
[1] Winslow A.M., Numerical solution of the quasilinear Poisson equation in a nonuniform triangle mesh, J. Comput. Phys. 135, 128138 (1966).
[2] Dvinsky A.S., Adaptive grid generation from harmonic maps on Riemannian manifolds, J. Comput. Phys. 95, 450476 (1991).
[3] Li R., Tang T., Zhang P.W., Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys. 170, 562588 (2001).
[4] Di Y., Li R., Tang T., and Zhang P., Moving mesh finite element methods for the incompressible Navier-Stokes equations, SIAM J. Sci. Comput. 26, 10361056 (2005).
[5] Wu Y.R. and Wang H.Y., Moving mesh finite element method for unsteady Navier-Stokes flow, East Asian J. Appl. Math. to appear.
[6] Bercovier M. andPironneau O., Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math. 33, 211224 (1979).
[7] Shen L. and Xu J.C., On a Schur complement operator arisen from Navier-Stokes equations and its preconditioning, Lecture Notes in Pure and Appl. Math. 202, 481490 (1999).
[8] Xu J.C., Iterative methods by space decomposition and subspace correction, SIAM Rev. 34, 581613 (1992).
[9] He Y.N., Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal. 41, 12631285 (2003).
[10] Benzi M., Golub G.H., and Liesen J., Numerical solution of saddle point problems, Acta Numer. 14, 1137 (2005).
[11] Bai Z.Z. and Ng M.K., On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput. 26, 17101724 (2005).
[12] Bai Z.Z., Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comp. 75, 791815 (2006).
[13] Elman H., Howle V.E., Shadid J., Silvester D., and Tuminaro R., Least squares preconditioners for stabilised discretisations of the Navier-Stokes equations, SIAM J. Sci. Comput. 30, 290311 (2007).
[14] Elman H.C. and Tuminaro R., Boundary conditions in approximate commutator preconditioners for the Navier-Stokes equations, Electron. Trans. Numer. Anal. 35, 257280 (2009).
[15] Benzi M. and Olshanskii M.A., An augmented Lagrangian-based approach to the Oseen problem, SIAM J. Sci. Comput. 28, 20952113 (2006).
[16] Benzi M., Ng M.K., Niu Q., and Wang Z., A relaxed dimensional factorisation preconditioner for the incompressible Navier-Stokes equations, J. Comput. Phys. 230, 61856202 (2011).
[17] Boyle J., Mihajlovic M.D., and Scott J.A., Hsl_mi20: An efficient amg preconditioner for finite element problems in 3d, Internat. J. Numer. Methods Engrg. 82, 6498 (2010).
[18] Elman H.C., Silvester D.J., and Wathen A.J., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, Oxford University Press, Oxford (2014).
[19] Li R., On multi-mesh h-adaptive methods, J. Sci. Comput. 24, 321341 (2005).
[20] Elman H., Mihajlovi M., and Silvester D., Fast iterative solvers for buoyancy driven flow problems, J. Comput. Phys. 230, 39003914 (2011).
[21] Li R., Tang T., and Zhang P.W.. A moving mesh finite element algorithm for singular problems in two and three space dimensions, J. Comput. Phys. 177, 365393 (2002).
[22] Cao W.M., Huang W.Z., and Russell R.D., An r-adaptive finite element method based upon moving mesh pdes, J. Comput. Phys. 149, 221244 (1999).
[23] Dyke M.V., An Album of Fluid Motion, Parabolic Press, Stanford (1982).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 66 *
Loading metrics...

Abstract views

Total abstract views: 175 *
Loading metrics...

* Views captured on Cambridge Core between 19th October 2016 - 19th January 2018. This data will be updated every 24 hours.