[1]
Aghazadeh N., Bastani M. and Salkuyeh D.K., Generalized Hermitian and skew-Hermitian splitting iterative method for image restoration, Appl. Math. Model., 39 (2015), pp. 6126–6138.

[2]
Aghazadeh N., Khojasteh S.D. and Bastani M., *Two-parameter generalized Hermitian and skew-Hermitian splitting iteration method*, Int. J. Comput. Math., 2015, DOI:10.1080/00207160.2015.1019873.

[3]
An H.-B. and Bai Z.-Z., NGLM: A globally convergent Newton-GMRES method, Math. Numer. Sinica, 27 (2005), pp. 151–174.

[4]
An H.-B. and Bai Z.-Z., A globally convergent Newton-GMRES method for large sparse systems of nonlinear equations, Appl. Numer. Math., 57 (2007), pp. 235–252.

[5]
Bai Z.-Z., A class of two-stage iterative methods for systems of weakly nonlinear equations, Numer. Algorithms, 14 (1997), pp. 295–319.

[6]
Bai Z.-Z., Parallel multisplitting two-stage iterative methods for large sparse systems of weakly nonlinear equations, Numer. Algorithms, 15 (1997), pp. 347–372.

[7]
Bai Z.-Z., On the convergence of parallel chaotic nonlinear multisplitting Newton-type methods, J. Comput. Appl. Math., 80 (1997), pp. 317–334.

[8]
Bai Z.-Z., Golub G.H. and Ng M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 603–626.

[9]
Bai Z.-Z., Huang Y.-M. and Ng M.K., On preconditioned iterative methods for Burgers equations, SIAM J. Sci. Comput., 29 (2007), pp. 415–439.

[10]
Bai Z.-Z. and Yang X., On HSS-based iteration methods for weakly nonlinear systems, Appl. Numer. Math., 59 (2009), pp. 2923–2936.

[11]
Bai Z.-Z., Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 16 (2009), pp. 447–479.

[12]
Bai Z.-Z. and Guo X.-P., On Newton-HSS methods for systems of nonlinear equations with positive-definite Jacobian matrices, J. Comput. Math., 28 (2010), pp. 235–260.

[13]
Benzi M., A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 360–374.

[14]
Bertaccini D., Golub G.H., Capizzano S.S. and Possio C.T., Preconditioned HSS methods for the solution of non-Hermitian positive definite linear systems and applications to the discrete convection-diffusion equation, Numer. Math., 99 (2005), pp. 441–484.

[15]
Cao Y. and Ren Z.-R., Two variants of the PMHSS iteration method for a class of complex symmetric indefinite linear systems, Appl. Math. Comput., 264 (2015), pp. 61–71.

[16]
Elman H.C. and Golub G.H., Iterative methods for cyclically reduced nonselfadjoint linear systems, Math. Comp., 54 (1990), pp. 671–700.

[17]
Li X. and Wu Y.-J., Accelerated Newton-GPSS methods for systems of nonlinear equations, J. Comput. Anal. Appl., 17 (2014), pp. 245–254.

[18]
Kelley C.T., Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, PA, 1995.

[19]
Ortega J.M. and Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.

[20]
Pour H.N. and Goughery H.S., New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems, Numer. Algorithms, 69 (2015), pp. 207–225.

[21]
Pu Z.-N. and Zhu M.-Z., A class of iteration methods based on the generalized preconditioned Hermitian and skew-Hermitian splitting for weakly nonlinear systems, J. Comput. Appl. Math., 250 (2013), pp. 16–27.

[22]
Salkuyeh D.K., The Picard-HSS iteration method for absolute value equations, Optim. Lett., 8 (2014), pp. 2191–2202.

[23]
Tang T., Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations, Numer. Math., 61 (1992), pp. 373–382.

[24]
Zhang J.-J., The relaxed nonlinear PHSS-like iterationmethod for absolute value equations, Appl. Math. Comput., 265 (2015), pp. 266–274.

[25]
Zhu M.-Z. and Zhang G.-F., On CSCS-based iteration methods for Toeplitz system of weakly nonlinear equations, J. Comput. Appl. Math., 235 (2011), pp. 5095–5104.

[26]
Zhu M.-Z. and Zhang G.-F., A class of iteration methods based on the HSS for Toeplitz systems of weakly nonlinear equations, J. Comput. Appl. Math., 290 (2015), pp. 433–444.