Skip to main content
    • Aa
    • Aa

Exponential Additive Runge-Kutta Methods for Semi-Linear Differential Equations

  • Jingjun Zhao (a1), Teng Long (a1) and Yang Xu (a1)

Exponential additive Runge-Kutta methods for solving semi-linear equations are discussed. Related order conditions and stability properties for both explicit and implicit schemes are developed, according to the dimension of the coefficients in the linear terms. Several examples illustrate our theoretical results.

Corresponding author
*Corresponding author. Email addresses: (J. Zhao), (Y. Xu)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] A.L. Araújo , A note on B-stability of splitting methods, Comput. Vis. Sci. 6, 5357 (2004).

[2] A.L. Araújo , A. Murua and J.M. Sanz-Serna , Symplectic methods based on decompositions, SIAM J. Numer. Anal. 34, 19261947 (1997).

[3] U.M. Ascher , S.J. Ruuth and B.T.R. Wetton , Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32, 797823 (1995).

[5] C.S. Chou , Y.T. Zhang , R. Zhao and Q. Nie , Numerical methods for stiff reaction-diffusion systems, Discrete Contin. Dyn. Syst. Ser. B 7, 515525 (2007).

[6] A. Christlieb , M. Morton , B. Ong and J.M. Qiu , Semi-implicit integral deferred correction constructed with additive Runge-Kutta methods, Commun. Math. Sci. 9, 879902 (2011).

[7] C. Desoer and H. Haneda , The measure of a matrix as a tool to analyze computer algorithms for circuit analysis, IEEE Trans. Circuit Theory, 19 (1972), pp. 480486.

[9] W.H. Enright , T.E. Hull and B. Lindberg , Comparing numerical methods for stiff systems of ODEs, BIT 15, 1048 (1975).

[10] M.A. Gondal , Exponential Rosenbrock integrators for option pricing, J. Comput. Appl. Math. 234, 11531160 (2010).

[11] D. Henry , Geometric Theory of Semilinear Parabolic Equations, Springer, Berlin Heidelberg (1981).

[12] M. Hochbruck and A. Ostermann , Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43, 10691090 (2005).

[14] M. Hochbruck , A. Ostermann and J. Schweitzer , Exponential Rosenbrock-type methods, SIAM J. Numer. Anal. 47, 786803 (2009).

[15] T. Jiang and Y.T. Zhang , Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations, J. Comput. Phys. 253, 368388 (2013).

[17] C.A. Kennedy and M.H. Carpenter , Additive Runge-Kutta schemes for convection-diffusion-reaction equations, Appl. Numer. Math. 44, 139181 (2003).

[18] S. Maset and M. Zennaro , Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations, Math. Comp. 78, 957967 (2009).

[20] H.N. Najm , P.S. Wyckoff and O.M. Knio , A semi-implicit numerical scheme for reacting flow: I. stiff chemistry, J. Comput. Phys. 143, 381402 (1998).

[22] A. Ostermann , M. Thalhammer and W.M. Wright , A class of explicit exponential general linear methods, BIT 46, 409431 (2006).

[25] J.G. Verwer , S-stability properties for generalized Runge-Kutta methods, Numer. Math. 27, 359370 (1976).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 112 *
Loading metrics...

* Views captured on Cambridge Core between 2nd May 2017 - 22nd September 2017. This data will be updated every 24 hours.