Skip to main content
×
×
Home

Hybrid Variational Model for Texture Image Restoration

  • Liyan Ma (a1), Tieyong Zeng (a2) (a3) and Gongyan Li (a1)
Abstract
Abstract

The hybrid variational model for restoration of texture images corrupted by blur and Gaussian noise we consider combines total variation regularisation and a fractional-order regularisation, and is solved by an alternating minimisation direction algorithm. Numerical experiments demonstrate the advantage of this model over the adaptive fractional-order variational model in image quality and computational time.

Copyright
Corresponding author
*Corresponding author. Email addresses: maliyan@ime.ac.cn (L. Ma), zeng@hkbu.edu.hk (T. Zeng), ligongyan@ime.ac.cn (G. Li)
References
Hide All
[1] Afonso M.V., Bioucas-Dias J.M. and Figueiredo M.A.T., Fast image recovery using variable splitting and constrained optimization, IEEE Trans. Image Process. 19, 10577149 (2010).
[2] Bai J. and Feng X.C., Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process. 16, 24922502 (2007).
[3] Beck A. and Teboulle M., A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci. 2, 183202 (2009).
[4] Berkels B., Burger M., Droske M., Nemitz O. and Rumpf M., Cartoon extraction based on anisotropic image classification vision, modeling, and visualization, Vision, Modeling, and Visualization, pp. 293300, Akademische Verlagsgesellschaft (2006).
[5] Boyd S. and Vandenberghe L., Convex Optimization, Cambridge University Press (2004).
[6] Bredies K., Kunisch K. and Pock T., Total generalized variation, SIAM J. Imaging Sci. 3, 492526 (2010).
[7] Buades A., Coll B. and Morel J.M., A review of image denoising algorithms, with a new one, Multiscale Model. Simul. 4, 490530 (2005).
[8] Buades A., Le T.M., More J.M. and Vese L., Fast cartoon+texture image filters, IEEE Trans. Image Process. 19, 19781986 (2010).
[9] Chambolle A., An algorithm for total variation minimization and applications, J. Math. Imag. Vis. 20, 8997 (2004).
[10] Chambolle A. and Lions P.L., Image recovery via total variation minimization and related problems, Numer. Math. 76, 167188 (1997).
[11] Chambolle A. and Pock T., A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis. 40, 120145 (2011).
[12] Chan R.H., Lanza A., Morigi S. and Sgallari F., An adaptive strategy for the restoration of textured images using fractional order regularization, Numer. Math. Theor. Meth. Appl. 6, 276296 (2013).
[13] Chan T. and Zhou H.M., Total variation wavelet thresholding, J. Sci. Comput. 32, 315341 (2007).
[14] Chen D., Chen Y. and Xue D., Three fractional-order TV-l2 models for image denoising, J. Comput. Inform. Syst. 9, 47734780 (2013).
[15] Chen D., Chen Y. and Xue D., Fractional-order total variation image denoising based on proximity algorithm, Appl. Math. Comput. 257, 537545 (2015).
[16] Daubechies I. and Teschke G., Variational image restoration bymeans of wavelets: Simultaneous decomposition, deblurring, and denoising, Appl. Comput. Harmon. A. 19, 116 (2005).
[17] Dong B., Ji H., Li J, Shen Z. and Xu Y., Wavelet frame based blind image inpainting, Appl. Comput. Harmon. A. 32, 268279 (2012).
[18] Dong Y., Hintermüler M. and Neri M., An efficient primal-dual method for L1TV image restoration, SIAM J. Imag. Sci. 2, 11681189 (2009).
[19] Gilboa G., Sochen N. and Zeevi Y.Y., Variational denoising of partly textured images by spatially varying constraints, IEEE Trans. Image Process. 15, 22812289 (2006).
[20] Goldstein T. and Osher S., The split Bregman algorithm for L1 regularized problems, SIAM J. Imag. Sci. 2, 323343 (2009).
[21] Grasmair M., Locally adaptive total variation regularisation, in Scale Space and Variational Methods in Computer Vision, Tai X., Morken K., Lysaker O.M. and Lie K. (Eds.), pp. 331342, Springer (2009).
[22] Guo X., Li F. and Ng M.K., A fast l1-TV algorithm for image restoration, SIAM J. Sci. Comput. 31, 23222341 (2009).
[23] Lou Y., Zeng T., Osher S. and Xin J., A weighted difference of anisotropic and isotropic total variation model for image processing, SIAM J. Imag. Sci. 8, 17981823 (2015).
[24] Lou Y., Zhang X., Osher S. and Bertozzi A., Image recovery via nonlocal operators, J. Sci. Comput. 42, 185197 (2010).
[25] Ma L., Ng M., Yu J. and Zeng T., Efficient box-constrained TV-type-l1 algorithms for restoring images with impulse noise, J, Comput. Math. 31, 249270 (2013).
[26] Meyer Y., Oscillating Patterns in Image Processing and in Some Nonlinear Evolution Equations. The Fifteenth Dean Jacquelines B. Lewis Memorial Lectures, American Mathematical Society (2001).
[27] Miller K.S. and Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley Interscience (1993).
[28] Ng M., Ngan H., Yuan X. and Zhang W., Patterned fabric inspection and visualization by the method of image decomposition, IEEE Trans. Aotum. Sci. Eng. 11, 943947 (2013).
[29] Ng M., Yuan X. and Zhang W., A coupled variational image decomposition and restoration model for blurred cartoon-plus-texture images with missing pixels, IEEE Trans. Image Process. 22, 22332246 (2013).
[30] Oldham K.B.A. and Spanier J.A., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover (2006).
[31] Osher S., Sole A. and Vese L., Image decomposition and restoration using total variation minimization and the H1, Multiscale Modeling & Simulation 1, 349370 (2003).
[32] Rudin L., Osher S. and Fatemi E., Nonlinear total variation based noise removal algorithms, Physica D 60, 259268 (1992).
[33] Setzer S., Steidl G. and Teuber T., nfimal convolution regularizations with discrete L1-type functionals, Comm. Math. Sci. 9, 797872 (2011).
[34] Tai X.-C. and Wu C., Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, SSVM 2009, LNCS 5567, 42, pp. 502513, Springer (2009) .
[35] Tikhonov A. and Arsenin V., Solution of Ill-Posed Problems, Winston and Sons (1977).
[36] Wang W. and Ng M.K., On algorithms for automatic deblurring from a single image, J. Comput. Math. 30, 80100 (2012).
[37] Wen Y-W., Ng M.K. and Huang Y., Efficient total variation minimization methods for color image restoration, IEEE Trans. Image Process. 17, 20812088 (2008).
[38] Vese L. and Osher S., Modeling textures with total variation minimization and oscillating patterns in image processing, J. Sci. Computing 19, 553572 (2003).
[39] Wu C., Zhang J. and Tai X.-C., Augmented lagrangian method for total variation restoration with non-quadratic fidelity, Inverse Problems Imag. 5, 237261 (2011).
[40] Yang F., Chen K. and Yu B., Homotopy curve tracking for total variation image restoration, J. Comput. Math. 30, 177196 (2012).
[41] Yang J., Zhang Y. and Yin W., An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput. 31, 28422865 (2009).
[42] You Y.L. and Kaveh M., Fourth-order partial differential equations for noise removal, IEEE Trans. Image Process. 9, 17231730 (2000).
[43] Zeng T., Li X. and Ng M., Alternating minimization method for total variation based wavelet shrinkage model, Commun. Comput. Phys. 8, 976994 (2010).
[44] Zhang X., Burger M., Bresson X. and Osher S., Bregmanized nonlocal regularization for deconvolution and sparse reconstruction, SIAM J. Imag. Sci. 3, 253276 (2010).
[45] Zhang J. and Chen K., A total fractional-order variation model for image restoration with non-homogeneous boundary conditions and its numerical solution, SIAM J. Imag. Sci. 8, 24872518 (2015).
[46] Zhang J., Wei Z. and Xiao L., Adaptive fractional-order multi-scale method for image denoising, SIAM J. Imag. Sci. 43, 3949 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 173 *
Loading metrics...

* Views captured on Cambridge Core between 7th September 2017 - 19th February 2018. This data will be updated every 24 hours.