[1]
Adhikari S. and Pascual B., Eigenvalues of linear viscoelastic systems, J. Sound Vib.
325, 1000–1011 (2009).

[2]
Bao L., Lin Y.-Q. and Wei Y.-M., Restarted generalized Krylov subspace methods for solving large-scale polynomial eigenvalue problems, Numer. Algorithms
50, 17–32 (2009).

[3]
Betcke T., Higham N.J., Mehrmann V., Schroder C. and Tisseur F., NLEVP: A collection of non-linear eigenvalue problems, ACM Trans. Math. Software
39, 7–28 (2013).

[4]
Chu E.K.-W., Perturbation of eigenvalues for matrix polynomials via the Bauer-Fike theorems, SIAM J. Matrix Anal. Appl.
25, 551–573 (2003).

[5]
Dedieu J. and Tisseur F., Perturbation theory for homogeneous polynomial eigenvalue problems, Linear Algebra Appl.
358, 71–94 (2003).

[6]
Duff I.S., Grimes R.G. and Lewis J.G., Sparse matrix test problems, ACM Trans. Math. Software
15, 1–14 (1989).

[7]
Gohberg I., Lancaster P. and Rodman L., Perturbation theory for divisors of operator polynomials, SIAM J. Math. Anal.
10, 1161–1183 (1979).

[8]
Gohberg I., Lancaster P. and Rodman L., Matrix Polynomials, Academic Press, New York (1982).

[9]
Gupta K.K., On a finite dynamic element method for free vibration analysis of structures, Comput. Methods Appl. Mech. Eng.
9, 105–120 (1976).

[10]
Higham N.J., Li R.-C. and Tisseur F., Backward error of polynomial eigenproblems solved by linearization, SIAM J. Matrix Anal. Appl.
29, 1218–1241 (2007).

[11]
Higham N.J., Mackey D.S. and Tisseur F., The conditioning of linearizations of matrix polynomials, SIAM J. Matrix Anal. Appl.
28, 1005–1028 (2006).

[12]
Higham N.J. and Tisseur F., More on pseudospectra for polynomial eigenvalue problems and applications in control theory, Linear Algebra Appl.
351, 435–453 (2002).

[13]
Higham N.J. and Tisseur F., Bounds for eigenvalues of matrix polynomials, Linear Algebra Appl.
358, 5–22 (2003).

[14]
Hoffnung L., Li R.-C. and Ye Q., Krylov type subspace methods for matrix polynomials, Linear Algebra Appl.
415, 52–81 (2006).

[15]
Huang W.-Q., Li T.-X., Li Y.-T. and Lin W.-W., A semiorthogonal generalized Arnoldi method and its variations for quadratic eigenvalue problems, Numer. Linear Algebra Appl.
20, 259–280 (2013).

[16]
Hwang T.-M., Lin W.-W., Liu J.-L. and Wang W., Jacobi-Davidson methods for cubic eigenvalue problems, Numer. Linear Algebra Appl.
12, 605–624 (2005).

[17]
Hwang T.-M., Lin W.-W., Wang W.-C. and Wang W., Numerical simulation of three dimensional pyramid quantum dot, J. Comput. Phys.
196, 208–232 (2004).

[18]
Hwang F.-N., Wei Z.-H., Hwang T.-M. and Wang W., A parallel additive Schwarz preconditioned Jacobi-Davidson algorithm for polynomial eigenvalue problems in quantum dot simulation, J. Comput. Phys.
229, 2932–2947 (2010).

[19]
Jia Z., Refined iterative algorithms based on Arnoldi's process for large unsymmetric eigenproblems, Linear Algebra Appl.
259, 1–23 (1997).

[20]
Lawrence P.W. and Corless R.M., Backward error of polynomial eigenvalue problems solved by linearization of Lagrange interpolants, SIAM J. Matrix Anal. Appl.
36, 1425–1442 (2015).

[21]
Mackey D.S., Mackey N., Mehl C. and Mehrmann V., Vector spaces of linearizations for matrix polynomials, SIAM J. Matrix Anal. Appl.
28, 971–1004 (2006).

[22]
Mackey D.S., Mackey N., Mehl C. and Mehrmann V., Structured polynomial eigenvalue problems: good vibrations from good linearization, SIAM J. Matrix Anal. Appl.
28, 1029–1051 (2006).

[23]
Moler C.B. and Stewart G.W., An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal.
10, 241–256 (1973).

[24]
Saad Y., Numerical Methods for Large Eigenvalue Problems, Halsted Press, New York (1992).

[25]
Sleijpen G.L.G., Booten A.G.L., Fokkema D.R. and van der Vorst H.A., Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems, BIT
36, 595–633 (1996).

[26]
Sorensen D.C., Truncated QZ methods for large scale generalized eigenvalue problems, Electron. Trans. Numer. Anal.
7, 141–162 (1998).

[27]
Tisseur F., Backward error and condition of polynomial eigenvalue problems, Linear Algebra Appl.
309, 339–361 (2000).

[28]
Tisseur F. and Meerbergen K., The quadratic eigenvalue problem, SIAM Rev.
43, 235–286 (2001).

[29]
Wei W. and Dai H., Partially orthogonal projection method and its variations for solving polynomial eigenvalue problem (in Chinese), Numer. Math. - J. Chinese Universities
38, 116–133 (2016).