Skip to main content

A Modified Relaxed Positive-Semidefinite and Skew-Hermitian Splitting Preconditioner for Generalized Saddle Point Problems

  • Yang Cao (a1) (a2), An Wang (a3) and Yu-Juan Chen (a3)

Based on the relaxed factorization techniques studied recently and the idea of the simple-like preconditioner, a modified relaxed positive-semidefinite and skew-Hermitian splitting (MRPSS) preconditioner is proposed for generalized saddle point problems. Some properties, including the eigenvalue distribution, the eigenvector distribution and the minimal polynomial of the preconditioned matrix are studied. Numerical examples arising from the mixed finite element discretization of the Oseen equation are illustrated to show the efficiency of the new preconditioner.

Corresponding author
*Corresponding author. Email address: (Y. Cao)
Hide All
[1] Bai Z.-Z., Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput., 75, 791815 (2006).
[2] Bai Z.-Z., Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 16, 447479 (2009).
[3] Bai Z.-Z., Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models, Numer. Linear Algebra Appl., 19, 914936 (2012).
[4] Bai Z.-Z., Eigenvalue estimates for saddle point matrices of Hermitian and indefinite leading blocks, J. Comput. Appl. Math., 237, 295306 (2013).
[5] Bai Z.-Z. and Golub G.H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27, 123 (2007).
[6] Bai Z.-Z., Golub G.H. and Li C.-K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput., 76, 287298 (2007).
[7] Bai Z.-Z., Golub G.H., Lu L.-Z. and Yin J.-F., Block triangular and skew-Hermitian splitting methods for positive-definite linear systems, SIAM J. Sci. Comput., 26, 844863 (2005).
[8] Bai Z.-Z., Golub G.H. and Ng M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24, 603626 (2003).
[9] Bai Z.-Z. and Hadjidimos A., Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix, Linear Algebra Appl., 463, 322339 (2014).
[10] Bai Z.-Z., Yin J.-F. and Su Y.-F., A shift-splitting preconditioner for non-Hermitian positive definite matrices, J. Comput. Math., 24, 539552 (2006).
[11] Benzi M., Deparis S., Grandperrin G. and Quarteroni A., Parameter estimates for the relaxed dimensional factorization preconditioner and application to hemodynamics, Comput. Methods Appl. Mech. Engrg., 300, 129145 (2016).
[12] Benzi M. and Golub G.H., A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl. 26, 2041 (2004).
[13] Benzi M., Golub G.H. and Liesen J., Numerical solution of saddle point problems, Acta Numer., 14, 1137 (2005).
[14] Benzi M., Ng M.K., Niu Q. and Wang Z., A relaxed dimensional fractorization preconditioner for the incompressible Navier-Stokes equations, J. Comput. Phys., 230, 61856202 (2011).
[15] Bergamaschi L. and Martínez Á., RMCP: Relaxed Mixed Constraint Preconditioners for saddle point linear systems arising in geomechanics, Comput. Methods Appl. Mech. Engrg., 221-222, 5462 (2012).
[16] Brezzi F. and Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York (1991).
[17] Bui T.-Q., Nguyen M.N., Zhang C.-Z. and Pham D.A.K., An efficient meshfree method for analysis of two-dimensional piezoelectric structures, Smart. Mater. Struct., 20, 065016, 11 pages (2011).
[18] Cao Y., Dong J.-L. and Wang Y.-M., A relaxed deteriorated PSS preconditioner for nonsymmetric saddle point problems from the steady Navier-Stokes equation, J. Comput. Appl. Math., 273, 4160 (2015).
[19] Cao Y., Miao S.-X. and Cui Y.-S., A relaxed splitting preconditioner for generalized saddle point problems, Comput. Appl. Math., 34, 865879 (2015).
[20] Cao Y., Ren Z.-R. and Shi Q., A simplified HSS preconditioner for generalized saddle point problems, BIT Numer. Math., 56, 423439 (2016).
[21] Cao Y., Yao L.-Q., Jiang M.-Q. and Niu Q., A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 31, 398421 (2013).
[22] Elman H.C., Silvester D.J. and Wathen A.J., Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics (2nd edn), Oxford University Press, Oxford (2014).
[23] Elman H.C., Ramage A. and Silvester D.J., IFISS: a Matlab toolbox for modelling incompressible flow, ACM Trans. Math. Softare, 33, Article 14 (2007).
[24] Fan H.-T., Zheng B. and Zhu X.-Y., A relaxed positive semi-definite and skew-Hermitian splitting preconditioner for non-Hermitian generalized saddle point problems, Numer. Algor., 72, 813834 (2016).
[25] Greif C., Moulding E. and Orban D., Bounds on eigenvalues of matrices arising from interior-point methods, SIAM, J. Optim., 24, 4983 (2014).
[26] Huang Y.-M., A practical formula for computing optimal parameters in the HSS iteration methods, J. Comput. Appl. Math., 255, 142149 (2014).
[27] Li C. and Vuik C., Eigenvalue analysis of the SIMPLE preconditioning for incompressible flow, Numer. Linear Algebra Appl., 11, 511523 (2004).
[28] Liang Z.-Z. and Zhang G.-F., SIMPLE-like preconditioners for saddle point problems from the steady Navier-Stokes equations, J. Comput. Appl. Math., 302, 211223 (2016).
[29] Pestana J. and Wathen A.J., Natural preconditioning and iterative methods for saddle point problems, SIAM Review, 57, 7191 (2015).
[30] Pan J.-Y., Ng M.K. and Bai Z.-Z., New preconditioners for saddle point problems, Appl. Math. Comput., 172, 762771 (2006).
[31] Ren Z.-R. and Cao Y., An alternating positive-semidefinite splitting preconditioner for saddle point problems from time-harmonic eddy current models, IMA J. Numer. Anal., 36, 922946 (2016).
[32] Saad Y., Iterative Methods for Sparse Linear Systems (2nd edn), SIAM: Philadelphia (2003).
[33] Shen S.-Q., A note on PSS preconditioners for generalized saddle point problems, Appl. Math. Comput., 237, 723729 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 94 *
Loading metrics...

Abstract views

Total abstract views: 287 *
Loading metrics...

* Views captured on Cambridge Core between 31st January 2017 - 22nd January 2018. This data will be updated every 24 hours.