Skip to main content
    • Aa
    • Aa

A New Uzawa-Type Iteration Method for Non-Hermitian Saddle-Point Problems

  • Yan Dou (a1), Ai-Li Yang (a1) and Yu-Jiang Wu (a1)

Based on a preconditioned shift-splitting of the (1,1)-block of non-Hermitian saddle-point matrix and the Uzawa iteration method, we establish a new Uzawa-type iteration method. The convergence properties of this iteration method are analyzed. In addition, based on this iteration method, a preconditioner is proposed. The spectral properties of the preconditioned saddle-point matrix are also analyzed. Numerical results are presented to verify the robustness and the efficiency of the new iteration method and the preconditioner.

Corresponding author
*Corresponding author. Email address: (Y.-J. Wu)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2] Z.-Z. Bai , Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput., 75 (2006), pp. 791815.

[3] Z.-Z. Bai , Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 16 (2009), pp. 447479.

[4] Z.-Z. Bai , Block preconditioners for elliptic PDE-constrained optimization problems, Computing, 91 (2011), pp. 379395.

[5] Z.-Z. Bai , Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models, Numer. Linear Algebra Appl., 19 (2012), pp. 914936.

[6] Z.-Z. Bai , and G. H. Golub , Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), pp. 123.

[7] Z.-Z. Bai , G. H. Golub , and J.-Y. Pan , Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), pp. 132.

[8] Z.-Z. Bai , and A. Hadjidimos , Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix, Linear Algebra Appl., 463 (2014), pp. 322339.

[9] Z.-Z. Bai , M. K. Ng , and Z.-Q. Wang , Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 410433.

[10] Z.-Z. Bai , B. N. Parlett , and Z.-Q. Wang , On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), pp. 138.

[11] Z.-Z. Bai , and Z.-Q. Wang , On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), pp. 29002932.

[14] J. H. Bramble , J. E. Pasciak , and A. T. Vassilev , Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 10721092.

[16] Y. Cao , J. Du , and Q. Niu , Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014), pp. 239250.

[17] Y. Cao , L.-Q. Yao , M.-Q. Jiang , and Q. Niu , A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 31 (2013), pp. 398421.

[19] H. C. Elman , and G. H. Golub , Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), pp. 16451661.

[20] B. Fischer , A. Ramage , D. J. Silvester , and A. J. Wathen , Minimum residual methods for augmented systems, BIT Numer. Math., 38 (1998), pp. 527543.

[21] G. H. Golub , and A. J. Wathen , An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput., 19 (1998), pp. 530539.

[22] M.-Q. Jiang , and Y. Cao , On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), pp. 973982.

[23] C. Keller , N. I. M. Gould , and A. J. Wathen , Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 13001317.

[24] K. H. Leem , S. P. Oliveira , and D. E. Stewart , Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations, Numer. Linear Algebra Appl., 11 (2004), pp. 293308.

[25] J. J. H. Miller , On the location of zeros of certain classes of polynomials with applications to numerical analysis, J. Inst. Math. Appl., 8 (1971), pp. 397406.

[26] Y. Saad , Iterative Methods for Sparse Linear Systems, Second Edition, Society for Industrial and Applied Mathematics, Philadelphia, 2003.

[27] C. H. Santos , B. P. B. Silva , and J.-Y. Yuan , Block SOR methods for rank-deficient least-squares problems, J. Comput. Appl. Math., 100 (1998), pp. 19.

[28] X. Wu , B. P. B. Silva , and J.-Y. Yuan , Conjugate gradient method for rank deficient saddle point problems, Numer. Algor., 35 (2004), pp. 139154.

[30] A.-L. Yang , and Y.-J. Wu , The Uzawa–HSSmethod for saddle-point problems, Appl. Math. Lett., 38 (2014), pp. 3842.

[31] J.-H. Yun , Variants of the Uzawa method for saddle point problems, Comput. Math. Appl., 65 (2013), pp. 10371046.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 155 *
Loading metrics...

* Views captured on Cambridge Core between 31st January 2017 - 23rd July 2017. This data will be updated every 24 hours.