This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[2]
Z.-Z. Bai , Structured preconditioners for nonsingular matrices of block two-by-two structures, Math. Comput., 75 (2006), pp. 791–815.

[3]
Z.-Z. Bai , Optimal parameters in the HSS-like methods for saddle-point problems, Numer. Linear Algebra Appl., 16 (2009), pp. 447–479.

[4]
Z.-Z. Bai , Block preconditioners for elliptic PDE-constrained optimization problems, Computing, 91 (2011), pp. 379–395.

[5]
Z.-Z. Bai , Block alternating splitting implicit iteration methods for saddle-point problems from time-harmonic eddy current models, Numer. Linear Algebra Appl., 19 (2012), pp. 914–936.

[6]
Z.-Z. Bai , and G. H. Golub , Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), pp. 1–23.

[7]
Z.-Z. Bai , G. H. Golub , and J.-Y. Pan , Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), pp. 1–32.

[8]
Z.-Z. Bai , and A. Hadjidimos , Optimization of extrapolated Cayley transform with non-Hermitian positive definite matrix, Linear Algebra Appl., 463 (2014), pp. 322–339.

[9]
Z.-Z. Bai , M. K. Ng , and Z.-Q. Wang , Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 410–433.

[10]
Z.-Z. Bai , B. N. Parlett , and Z.-Q. Wang , On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), pp. 1–38.

[11]
Z.-Z. Bai , and Z.-Q. Wang , On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), pp. 2900–2932.

[14]
J. H. Bramble , J. E. Pasciak , and A. T. Vassilev , Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 1072–1092.

[16]
Y. Cao , J. Du , and Q. Niu , Shift-splitting preconditioners for saddle point problems, J. Comput. Appl. Math., 272 (2014), pp. 239–250.

[17]
Y. Cao , L.-Q. Yao , M.-Q. Jiang , and Q. Niu , A relaxed HSS preconditioner for saddle point problems from meshfree discretization, J. Comput. Math., 31 (2013), pp. 398–421.

[19]
H. C. Elman , and G. H. Golub , Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), pp. 1645–1661.

[20]
B. Fischer , A. Ramage , D. J. Silvester , and A. J. Wathen , Minimum residual methods for augmented systems, BIT Numer. Math., 38 (1998), pp. 527–543.

[21]
G. H. Golub , and A. J. Wathen , An iteration for indefinite systems and its application to the Navier-Stokes equations, SIAM J. Sci. Comput., 19 (1998), pp. 530–539.

[22]
M.-Q. Jiang , and Y. Cao , On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), pp. 973–982.

[23]
C. Keller , N. I. M. Gould , and A. J. Wathen , Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1300–1317.

[24]
K. H. Leem , S. P. Oliveira , and D. E. Stewart , Algebraic multigrid (AMG) for saddle point systems from meshfree discretizations, Numer. Linear Algebra Appl., 11 (2004), pp. 293–308.

[25]
J. J. H. Miller , On the location of zeros of certain classes of polynomials with applications to numerical analysis, J. Inst. Math. Appl., 8 (1971), pp. 397–406.

[26]
Y. Saad , Iterative Methods for Sparse Linear Systems, Second Edition, Society for Industrial and Applied Mathematics, Philadelphia, 2003.

[27]
C. H. Santos , B. P. B. Silva , and J.-Y. Yuan , Block SOR methods for rank-deficient least-squares problems, J. Comput. Appl. Math., 100 (1998), pp. 1–9.

[28]
X. Wu , B. P. B. Silva , and J.-Y. Yuan , Conjugate gradient method for rank deficient saddle point problems, Numer. Algor., 35 (2004), pp. 139–154.

[30]
A.-L. Yang , and Y.-J. Wu , The Uzawa–HSSmethod for saddle-point problems, Appl. Math. Lett., 38 (2014), pp. 38–42.

[31]
J.-H. Yun , Variants of the Uzawa method for saddle point problems, Comput. Math. Appl., 65 (2013), pp. 1037–1046.