Skip to main content

Numerical Solution of the Time-Fractional Sub-Diffusion Equation on an Unbounded Domain in Two-Dimensional Space

  • Hongwei Li (a1), Xiaonan Wu (a2) and Jiwei Zhang (a3)

The numerical solution of the time-fractional sub-diffusion equation on an unbounded domain in two-dimensional space is considered, where a circular artificial boundary is introduced to divide the unbounded domain into a bounded computational domain and an unbounded exterior domain. The local artificial boundary conditions for the fractional sub-diffusion equation are designed on the circular artificial boundary by a joint Laplace transform and Fourier series expansion, and some auxiliary variables are introduced to circumvent high-order derivatives in the artificial boundary conditions. The original problem defined on the unbounded domain is thus reduced to an initial boundary value problem on a bounded computational domain. A finite difference and L1 approximation are applied for the space variables and the Caputo time-fractional derivative, respectively. Two numerical examples demonstrate the performance of the proposed method.

Corresponding author
*Corresponding author. Email addresses: (H. Li), (X. Wu), (J. Zhang)
Hide All
[1] West B.J., Bologna M. and Grigolini P., Physics of Fractal Operators, Springer, New York (2003).
[2] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).
[3] Metzler R. and Klafter J., The random walks guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep. 339, 177 (2000).
[4] Herrmann R., Fractional Calculus: An Introduction for Physicists, World Scientific, Hackensack, New Jersey (2011).
[5] Henry B.I. and Wearne S.L., Fractional reaction-diffusion, Phys. A 276, 448455 (2000).
[6] Yuste S.B. and Acedo L., An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations, SIAM J. Numer. Anal. 42, 18621874 (2005).
[7] Schneider W.R. and Wyss W., Fractional diffusion and wave equations, J. Math. Phys. 30, 134144 (1989).
[8] Wyss W., The fractional diffusion equation, J. Math. Phys. 27, 27822785 (1986).
[9] Gorenflo R., Luchko Y. and Mainardi F., Wright function as scale-invariant solutions of the diffusion-wave equation, J. Comput. Appl. Math. 118, 175191 (2000).
[10] Langlands T. and Henry B., The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys. 205, 719736 (2005).
[11] Zhuang P. and Liu F., Implicit difference approximation for the time fractional diffusion equation, J. Appl. Math. Comput. 22, 8799 (2006).
[12] Liu Q., Gu Y.T., Zhuang P., Liu F. and Nie Y.F., An implicit RBF meshless approach for time fractional diffusion equations, Comput. Mech. 48, 112 (2011).
[13] Zhang Y.N. and Sun Z., Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys. 230, 87138728 (2011).
[14] Wang Y.M., Maximum norm error estimates of ADI methods for a two dimensional fractional sub-diffusion equation, Adv. Math. Phys. 1-10, Article ID 293706 (2013).
[15] Cui M., Convergence analysis of high-order compact alternating direction implicit schemes for the two dimensional time fractional diffusion equation, Numer. Algorithms 62, 383409 (2013).
[16] Sun H., Chen W. and Sze K.Y., A semi-discrete finite element method for a class of time-fractional diffusion equations, Phil. Trans. R. Soc. A 371, 20120268 (2013).
[17] Guo B., Xu Q. and Zhu A., A second-order finite difference method for two-dimensional fractional percolation equations, Commun. Comput. Phys. 19, 733757 (2016).
[18] Li G., Sun C., Jia X. and Du D., Numerical solution to the multi-term time fractional diffusion equation in a finite domain, Numer. Math. Theor. Meth. Appl. 9, 337357 (2016).
[19] Yang X., Zhang H. and Xu D., Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation, J. Comput. Phys. 256, 824837 (2014).
[20] Yan L. and Yang F., A kansa-type MFS scheme for two dimensional time fractional diffusion equations, Eng. Anal. Bound. Elem. 37, 14261435 (2013).
[21] Jin B., Lazarov R. and Zhou Z., Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal. 51, 445466 (2013).
[22] Gao G., Sun Z. and Zhang H., A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys. 259, 3350 (2014).
[23] Li D., Zhang C., Ran M., A linear finite difference scheme for generalized time fractional Burgers equation, Appl. Math. Model. 40, 60696081 (2016).
[24] Gao G. and Sun Z., The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain, J. Comput. Phys. 236, 443460 (2013).
[25] Brunner H., Han H. and Yin D., Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain, J. Comput. Phys. 276, 541562 (2014).
[26] Ghaffari R. and Hosseini S.M., Obtaining artificial boundary conditions for fractional sub-diffusion equation on space two-dimensional unbounded domains, Comput. Math. Appl. 68, 1326 (2014).
[27] Dea J.R., Absorbing boundary conditions for the fractional wave equation, Appl. Math. Comput. 219, 98109820 (2013).
[28] Awotunde A.A., Ghanam R.A. and Tatar N., Artificial boundary condition for a modified fractional diffusion problem, Bound. Value Probl. 1, 117 (2015).
[29] Arnold A., Ehrhardt M., Schulte M. and Sofronov I., Discrete transparent boundary conditions for the Schrödinger equation on circular domains, Commun. Math. Sci. 10, 889916 (2012).
[30] Han H. and Huang Z., Exact artificial boundary conditions for Schrödinger equation in ℝ2 , Commun. Math. Sci. 2, 7994 (2004).
[31] Li D. and Zhang J., Efficient implementation to numerically solve the nonlinear time fractional parabolic problems on unbounded spatial domain, J. Comput. Phys. 322, 415428 (2016).
[32] Podlubny I., Fractional Differential Equations, Academic Press, San Diego (1999).
[33] Han H. and Wu X., Artificial Boundary Method, Springer-Verlag, Berlin, Heidelberg and Tsinghua University Press, Beijing (2013).
[34] Han H. and Bao W., High-order local artificial boundary conditions for problems in unbounded domains, Comput. Methods Appl. Mech. Eng. 188, 455471 (2000).
[35] Li H., Wu X. and Zhang J., Local artificial boundary conditions for Schrödinger and heat equations by using high-order azimuth derivatives on circular artificial boundary, Comput. Phys. Commun. 185, 16061615 (2014).
[36] Oldham K.B. and Spanier J., The Fractional Calculus, Academic Press, New York (1974).
[37] Diethelm K., Ford N.J., Freed A.D. and Yu. Luchko, A selection of numerical methods, Comput. Methods Appl. Mech. Eng. 194, 743773 (2005).
[38] Zhang J., Han H. and Brunner H., Numerical blow-up of semilinear parabolic PDEs on unbounded domains in ℝ2 , J. Sci. Comput. 49, 367382 (2011).
[39] Zheng C., Approximation, stability and fast evaluation of exact artificial boundary condition for one-dimensional heat equation, J. Comput. Math. 25, 730745 (2007).
[40] Li J., A fast time stepping method for evaluating fractional integrals, SIAM J. Sci. Comput. 31, 46964714 (2010).
[41] Jiang S., Zhang J., Zhang Q. and Zhang Z., Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys. 21, 650678 (2017).
[42] Jin X., Lin F. and Zhao Z., Preconditioned iterative methods for two-dimensional space-fractional diffusion equations, Commun. Comput. Phys. 18, 469488 (2015).
[43] Wu S. and Zhou T., Fast parareal iterations for fractional diffusion equations, J. Comput. Phys. 329, 210226 (2017).
[44] Zhang Q., Zhang J., Jiang S. and Zhang Z., Numerical solution to a linearized time fractional KdV equation on unbounded domains, Math. Comput., to appear (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 47 *
Loading metrics...

Abstract views

Total abstract views: 254 *
Loading metrics...

* Views captured on Cambridge Core between 7th September 2017 - 19th February 2018. This data will be updated every 24 hours.