Skip to main content
×
×
Home

On a New SSOR-Like Method with Four Parameters for the Augmented Systems

  • Hui-Di Wang (a1) and Zheng-Da Huang (a1)
Abstract
Abstract

In this paper, we propose a new SSOR-like method with four parameters to solve the augmented system. And we analyze the convergence of the method and get the optimal convergence factor under suitable conditions. It is proved that the optimal convergence factor is the same as the GMPSD method [M.A. Louka and N.M. Missirlis, A comparison of the extrapolated successive overrelaxation and the preconditioned simultaneous displacement methods for augmented systems, Numer. Math. 131(2015) 517-540] with five parameters under the same assumption.

Copyright
Corresponding author
*Corresponding author. Email addresses: hdwang@zju.edu.cn (H.-D. Wang), zdhuang@zju.edu.cn (Z.- D. Huang)
References
Hide All
[1] Brezzi F. and Fortin M., Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991.
[2] Betts J. T., Practical Methods for Optimal Control Using Nonlinear Programming, Advances in Design and Control, 3, SIAM, Philadelphia, 2001.
[3] Bramble J. H., Pasciak J. E., and Vassilev A. T., Analysis of the inexact Uzawa algorithm for saddle point problems, SIAM J. Numer. Anal., 34 (1997), pp. 10721092.
[4] Benzi M., Golub G. H., and Liesen J., Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1137.
[5] Benzi M. and Golub G. H., A preconditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), pp. 2041.
[6] Bai Z.-Z. and Ng M. K., On inexact preconditioners for nonsymmetric matrices, SIAM J. Sci. Comput., 26 (2005), pp. 17101724.
[7] Bai Z.-Z., Golub G. H., and Li C.-K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comp., 76 (2007), pp. 287298.
[8] Bai Z.-Z. and Wang Z.-Q., On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), pp. 29002932.
[9] Bai Z.-Z., Ng M. K., and Wang Z.-Q., Constraint preconditioners for symmetric indefinite matrices, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 410433.
[10] Bai Z.-Z., Parlett B. N., and Wang Z.-Q., On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), pp. 138.
[11] Bai Z.-Z., Golub G. H., and Ng M. K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), pp. 603626.
[12] Bai Z.-Z., Golub G. H., and Pan J.-Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), pp. 132.
[13] Bai Z.-Z. and Golub G. H., Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle point problems, IMA J. Numer. Anal., 27 (2007), pp. 123.
[14] Bai Z.-Z., Golub G. H., and Ng M. K., On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra Appl., 428 (2008), pp. 413440.
[15] Benzi M., A generalization of the Hermitian and skew-Hermitian splitting iteration, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 360374.
[16] Chen Y.-L. and Tan X.-Y., Semiconvergence criteria of iterations and extrapolated iterations and constructive methods of semiconvergent iteration matrices, Appl. Math. Comput., 167 (2005), pp. 930956.
[17] Darvishi M. T. and Hessari P., Symmetric SOR method for augmented systems, Appl. Math. Comput., 183 (2006), pp. 409415.
[18] Darvishi M. T. and Hessari P., A modified symmetric successive overrelaxation method for augmented systems, Comput. Math. Appl., 61 (2011), pp. 31283135.
[19] Dyn N. and Ferguson W. E., The numerical solution of equality constrained quadratic programming problems, Math. Comp., 41 (1983), pp. 165170.
[20] Elman H. C. and Golub G. H., Inexact and preconditioned Uzawa algorithms for saddle point problems, SIAM J. Numer. Anal., 31 (1994), pp. 16451661.
[21] Elman H. C., Silvester D. J., and Wathen A. J., Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations, Numer. Math., 90 (2002), pp. 665688.
[22] Fortin M. and Glowinski R., Augmented Lagrangian Method: Applications to the numerical solution of boundary value problems, Studies in Mathematics and its Applications, 15, North-Holland Publishing Co., Amsterdam, 1983.
[23] Golub G. H., Wu X., and Yuan J.-Y., SOR-like methods for augmented systems, BIT Numer. Math., 41 (2001), pp. 7185.
[24] Gould N. I. M., Hribar M. E., and Nocedal J., On the solution of equality constrained quadratic programming problems arising in optimization, SIAM J. Sci. Comput., 23 (2001), pp. 13761395.
[25] Gill P. E., Murray W., and Wright M. H., Practical Optimization, Academic Press, London-New York, 1981.
[26] Hu Q.-Y. and Zou J., An iterative method with variable relaxation parameters for saddle point problems, SIAM J. Matrix Anal. Appl., 23 (2001), pp. 317338.
[27] Hu Q.-Y. and Zou J., Two new variants of nonlinear inexact Uzawa algorithms for saddle point problems, Numer. Math., 93 (2002), pp. 333359.
[28] Huang Z.-D. and Zhou X.-Y., On the minimum convergence factor of a class of GSOR-like methods for augmented systems, Numer. Algor., 70 (2014), pp. 113132.
[29] Jiang M.-Q. and Cao Y., On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), pp. 973982.
[30] Keller C., Gould N. I. M., and Wathen A. J., Constraint preconditioning for indefinite linear systems, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 13001317.
[31] Li C.-J., Li Z., Nie Y.-Y., and Evans D. J., Generalized AOR method for the augmented system, Int. J. Comput. Math., 81 (2004), pp. 495504.
[32] Li Z., Li C.-J., Evans D. J., and Zhang T., Two parameter GSOR method for the augmented systems, Int. J. Comput. Math., 82 (2005), pp. 10331042.
[33] Lin Y.-Q. and Wei Y.-M., Fast corrected Uzawa methods for solving symmetric saddle point problems, Calcolo, 43 (2006), pp. 6582.
[34] Lin Y.-Q. and Wei Y.-M., A note on constraint preconditioners for nonsymmetric saddle point problems, Numer. Linear Algebra Appl., 14 (2007), pp. 659664.
[35] Li J.-C. and Kong X., Optimal parameters of GSOR-like methods for solving the augmented linear systems, Appl. Math. Comput., 204 (2008), pp. 150161.
[36] Lu J.-F. and Zhang Z.-Y., A modified nonlinear inexact Uzawa algorithm with a variable relaxation parameter for the stabilized saddle point problem, SIAM J. Matrix Anal. Appl., 31 (2010), pp. 19341957.
[37] Li X., Yang A.-L., and Wu Y.-J., Parameterized preconditioned Hermitian and skew-Hermitian splitting iteration method for saddle-point problems, Int. J. Comput. Math., 91 (2014), pp. 12241283.
[38] Louka M. A. and Missirlis N. M., A comparison of the extrapolated successive overrelaxation and the preconditioned simultaneous displacement methods for augmented linear systems, Numer. Math., 131 (2015), pp. 517540.
[39] Martins M. M., Yousif W., and Santos J. L., A variant of the AOR method for augmented systems, Math. Comput., 81 (2012), pp. 399417.
[40] Najafi H. S. and Edalatpanah S. A., A new modified SSOR iteration method for solving augmented linear systems, Int. J. Comput. Math., 91 (2014), pp. 539552.
[41] Najafi H. S. and Edalatpanah S. A., On the modified symmetric successive over-relaxation method for augmented systems, Comput. Appl. Math., 34 (2015), pp. 607617.
[42] Pour H. N. and Goughery H. S., New Hermitian and skew-Hermitian splitting methods for non-Hermitian positive-definite linear systems, Numer. Algor., 69 (2015), pp. 207225.
[43] Sturier E. D. and Liesen J., Block-diagonal preconditioners for indefinite linear algebraic systems, SIAM J. Sci. Comput., 26 (2005), pp. 15981619.
[44] Shao X.-H., Li Z., and Li C.-J., Modified SOR-like method for the augmented system, Int. J. Comput. Math., 84 (2007), pp. 16531662.
[45] Wen C. and Huang T.-Z., Modified SSOR-like method for augmented system, Math. Model. Anal., 16 (2011), pp. 475487.
[46] Wu S.-L., Huang T.-Z., and Zhao X.-L., A modified SSOR iterative method for augmented systems, J. Comput. Appl. Math., 228 (2009), pp. 424433.
[47] Wang K., Di J.-J., and Liu D., Improved PHSS iterative methods for solving saddle point problems, Numer. Algor., 71 (2016), pp. 753773.
[48] Young D. M., Iterative Solution of Large Linear Systems, Academic Press, New York-London, 1971.
[49] Zheng B., Wang K., and Wu Y.-J., SSOR-like methods for saddle point problems, Int. J. Comput. Math., 86 (2009), pp. 14051423.
[50] Zheng B., Bai Z.-Z., and Yang X., On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 431 (2009), pp. 808817.
[51] Zhang G.-F. and Lu Q.-H., On generalized symmetric SOR method for augmented systems, J. Comput. Appl. Math., 219 (2008), pp. 5158.
[52] Zhou Y.-Y., Zhang G.-F., A generalization of parameterized inexact Uzawa method for generalized saddle point problems, Appl. Math. Comput., 215 (2009), pp. 599607.
[53] Zhang L.-T., Huang T.-Z., Cheng S.-H., and Wang Y.-P., Convergence of a generalized MSSOR method for augmented systems, J. Comput. Appl. Math., 236 (2012), pp. 18411850.
[54] Zhu M.-Z., A generalization of the local Hermitian and skew-Hermitian splitting iteration methods for the non-Hermitian saddle point problems, Appl. Math. Comput., 218 (2012), pp. 88168824.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 189 *
Loading metrics...

* Views captured on Cambridge Core between 31st January 2017 - 22nd January 2018. This data will be updated every 24 hours.