This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1]
Z.-Z. Bai , M. Benzi , F. Chen , Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87(2010), pp. 93–111.

[2]
Z.-Z. Bai , M. Benzi , F. Chen , On preconditioned MHSS iteration methods for complex symmetric linear systems, Numerical Algorithms, 56(2011), pp. 297–317.

[3]
Z.-Z. Bai , G.H. Golub and C.-K. Li , Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Mathematics of Computation, 76(2007), pp. 287–298.

[4]
Z.-Z. Bai , G.H. Golub , M.K. Ng , Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM Journal on Matrix Analysis and Applications, 24(2003), pp. 603–626.

[5]
Z.-Z. Bai , G.H. Golub , M.K. Ng , On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra and its Applications, 428(2008), pp. 413–440.

[6]
Z.-Z. Bai , G.H. Golub , J.-Y. Pan , Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numerische Mathematik, 98(2004), pp. 1–32.

[7]
R.H. Chan , X.-Q. Jin , An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007.

[8]
R.H. Chan , M.K. Ng , Conjugate gradient methods for Toeplitz systems, SIAM Review, 38(1996), pp. 427–482.

[9]
R.H. Chan , K.P. Ng , Fast iterative solvers for Toeplitz-plus-band systems, SIAM Journal on Scientific Computing, 14(1993), pp. 1013–1019.

[10]
R.H. Chan , G. Strang , Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM Journal on Scientific and Statistical Computing, 10(1989), pp. 104–119.

[12]
N. Laskin , Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 268(2000), pp. 298–305.

[13]
N. Laskin , Fractional Schrödinger equation, Physical Review E, 66(2002), pp. 56–108.

[14]
S.-L. Lei , H.-W. Sun , A circulant preconditioner for fractional diffusion equations, Journal of Computational Physics, 242(2013), pp. 715–725.

[16]
M.K. Ng , J.-Y. Pan , Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices, SIAM Journal on Scientific Computing, 32(2010), pp. 1442–1464.

[18]
M.D. Ortigueira , Riesz potential opeators and inverses via fractional centred derivatives, International Journal of Mathematics and Mathematical Sciences, 2006(2006), pp. 1–12.

[19]
J.-Y. Pan , R.-H. Ke , M. K. Ng , H.-W. Sun , Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM Journal on Scientific Computing, 36(2014), pp. A2698–A2719.

[20]
Y.-H. Ran , J.-G. Wang , D.-L. Wang , On HSS-like iteration method for the space fractional coupled nonlinear Schrödinger equations, Applied Mathematics and Computation, 271(2015), pp. 482–488.

[21]
D.-L. Wang , A.-G. Xiao , W. Yang , Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, Journal of Computational Physics, 242(2013), pp. 670–681.

[22]
D.-L. Wang , A.-G. Xiao , W. Yang , A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, Journal of Computational Physics, 272(2014), pp. 644–655.

[23]
D.-L. Wang , A.-G. Xiao , W. Yang , Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Applied Mathematics and Computation, 257(2015), pp. 241–251.

[24]
Q. Yang , F. Liu , I. Turner , Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathmatical Modelling, 34(2010), pp. 200–218.