[1]
Bai, Z.-Z., Benzi, M., Chen, F., Modified HSS iteration methods for a class of complex symmetric linear systems, Computing, 87(2010), pp. 93–111.

[2]
Bai, Z.-Z., Benzi, M., Chen, F., On preconditioned MHSS iteration methods for complex symmetric linear systems, Numerical Algorithms, 56(2011), pp. 297–317.

[3]
Bai, Z.-Z., Golub, G.H. and Li, C.-K., Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Mathematics of Computation, 76(2007), pp. 287–298.

[4]
Bai, Z.-Z., Golub, G.H., Ng, M.K., Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM Journal on Matrix Analysis and Applications, 24(2003), pp. 603–626.

[5]
Bai, Z.-Z., Golub, G.H., Ng, M.K., On inexact Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, Linear Algebra and its Applications, 428(2008), pp. 413–440.

[6]
Bai, Z.-Z., Golub, G.H., Pan, J.-Y., Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numerische Mathematik, 98(2004), pp. 1–32.

[7]
Chan, R.H., Jin, X.-Q., An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007.

[8]
Chan, R.H., Ng, M.K., Conjugate gradient methods for Toeplitz systems, SIAM Review, 38(1996), pp. 427–482.

[9]
Chan, R.H., Ng, K.P., Fast iterative solvers for Toeplitz-plus-band systems, SIAM Journal on Scientific Computing, 14(1993), pp. 1013–1019.

[10]
Chan, R.H., Strang, G., Toeplitz equations by conjugate gradients with circulant preconditioner, SIAM Journal on Scientific and Statistical Computing, 10(1989), pp. 104–119.

[11]
Demengel, F., Demengel, G., Fractional Sobolev Spaces, Springer, London, 2012.

[12]
Laskin, N., Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 268(2000), pp. 298–305.

[13]
Laskin, N., Fractional Schrödinger equation, Physical Review E, 66(2002), pp. 56–108.

[14]
Lei, S.-L., Sun, H.-W., A circulant preconditioner for fractional diffusion equations, Journal of Computational Physics, 242(2013), pp. 715–725.

[15]
Ng, M.K., Iterative Methods for Toeplitz Systems, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2004.

[16]
Ng, M.K., Pan, J.-Y., Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices, SIAM Journal on Scientific Computing, 32(2010), pp. 1442–1464.

[17]
Ng, M.K., Serra-Capizzano, S., Tablino-Possio, C., Multigrid methods for symmetric Sinc-Galerkin systems, Linear Algebra and its Applications, 12(2005), pp. 261–269.

[18]
Ortigueira, M.D., Riesz potential opeators and inverses via fractional centred derivatives, International Journal of Mathematics and Mathematical Sciences, 2006(2006), pp. 1–12.

[19]
Pan, J.-Y., Ke, R.-H., Ng, M. K., Sun, H.-W., Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations, SIAM Journal on Scientific Computing, 36(2014), pp. A2698–A2719.

[20]
Ran, Y.-H., Wang, J.-G., Wang, D.-L., On HSS-like iteration method for the space fractional coupled nonlinear Schrödinger equations, Applied Mathematics and Computation, 271(2015), pp. 482–488.

[21]
Wang, D.-L., Xiao, A.-G., Yang, W., Crank-Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative, Journal of Computational Physics, 242(2013), pp. 670–681.

[22]
Wang, D.-L., Xiao, A.-G., Yang, W., A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, Journal of Computational Physics, 272(2014), pp. 644–655.

[23]
Wang, D.-L., Xiao, A.-G., Yang, W., Maximum-norm error analysis of a difference scheme for the space fractional CNLS, Applied Mathematics and Computation, 257(2015), pp. 241–251.

[24]
Yang, Q., Liu, F., Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Applied Mathmatical Modelling, 34(2010), pp. 200–218.