Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T02:28:59.459Z Has data issue: false hasContentIssue false

Simulation of Copolymer Phase Separation in One-Dimensional Thin Liquid Films

Published online by Cambridge University Press:  28 May 2015

Hidenori Yasuda*
Affiliation:
Department of Mathematics, Josai University, Sakado, Saitama 350-0295, Japan
*
Corresponding author. Email: yasuda@math.josai.ac.jp
Get access

Abstract

This paper discusses the development of an invariant finite difference scheme to simulate the microphase separation of copolymers in one-dimensional thin liquid films. The film phenomena are modelled using two-phase shallow water equations and the Ohta-Kawasaki potential, which governs the phase separation of the copolymer. Non-positive volume fractions and spurious oscillations are eventually eliminated, in simulating the one-dimensional phase separation lamellar pattern.

Type
Research Article
Copyright
Copyright © Global-Science Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Segalman, R.A., Patterning with block copolymer thin films, Materials Science and Engineering R48 (2005) pp. 191226.Google Scholar
[2]Doi, M., Onuki, A., Dynamic coupling between stress and composition in polymer solutions and blends, J. Phys. II France 2 (1992) pp. 16311656.Google Scholar
[3]Tanaka, H., Viscoelastic model of phase separation, Phys. Rev. E56 (1997) 44514462.Google Scholar
[4]Yasuda, H., Two-phase shallow water equations and phase separation in thin immiscible liquid films, J. Sci. Comput. 43 (2010) pp. 471487.CrossRefGoogle Scholar
[5]Ohta, T., Kawasaki, K., Equilibrium morphology of block copolymer melts, Macromolecules 19 (1986) pp. 26212632.CrossRefGoogle Scholar
[6]Ishii, M., Thermo-Fluid Dynamics Theory of Two-Phase Flow, Eyrolles, Paris, 1975.Google Scholar
[7]Gidaspow, D., Multiphase Flow and Fluidization, Academic Press, San Diego, 1994.Google Scholar
[8]Israelachvili, J.N., Intermolecular and Surface Forces, Academic Press, London, 1992.Google Scholar
[9]Pismen, L.M., Nanoscale effects in mesoscopic films, In: Golovin, A.A., Nepomnyashchy, A.A. (Eds.), Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems, Springer, Amsterdam, 2006, pp. 167193.Google Scholar
[10]Kawasaki, K., Nonequilibrium and Phase Transition, Asakura, Tokyo, 2000. (in Japanese)Google Scholar
[11]Hashimoto, T., Shibayama, M., Kawai, H., Domain-boundary structure of styrene-isoprene block copolymer films cast from solution. 4. Molecular-weight dependence of lamellar microdomains, Macromolecules 13 (1980) pp. 12371247.CrossRefGoogle Scholar
[12]Ohnishi, I., Nishiura, Y., Imai, M., Matsushita, Y., Analytical solutions describing the phase separation driven by a free energy functional containing a long-range interaction term, Chaos 9 (1999) pp. 329341.Google Scholar
[13]Vladimirov, V.S., Methods of the Theory of Generalized Functions, Taylor & Francis, London, 2002.CrossRefGoogle Scholar
[14]Choksi, R., Peletier, M.A., Williams, J.F., On the phase diagram for microphase separation of diblock copolymers: An approach via a nonlocal Cahn-Hilliard functional, SIAM J. Appl. Math. 69 (2009) pp. 17121738.Google Scholar
[15]Yanenko, N.N., Shokin, Y.L., On the group classification of the difference scheme for systems of equations in gas dynamics, In: Holt, M. (Ed.), Lecture Notes in Physics 8, Springer, Berlin, 1971, pp. 317.Google Scholar
[16]Yanenko, N.N., Shokin, Y.L., Schemas numeriques invariant de groupe pour les equations de la gas, In: Cabannes, H., Temam, R. (Eds.), Lecture Notes in Physics 18, Springer, Berlin, 1973, pp. 174186.Google Scholar
[17]LeVeque, R.J., Finite Volume Method for Hyperbolic Problems, Cambridge University Press, Cambridge, 2002.Google Scholar
[18]Dukowics, J.K., Ramshaw, J.D., Tensor viscosity method for convection in numerical fluid dynamics, J. Comput. Phys. 32 (1979) pp. 7179.CrossRefGoogle Scholar
[19]Blossey, P.N., Durran, D.R., Selective monotonicity preservation in scalar advection, J. Comput. Phys. 227(2008) pp. 51605183.CrossRefGoogle Scholar
[20]Chaikin, P.M., Lubensky, T.C., Principles of Condensed Matter Physic, Cambridge University Press, Cambridge, 1995.CrossRefGoogle Scholar
[21]Gottlieb, S., Shu, C.-W., Total variation diminishing Runge-Kutta schemes, Math. Comp. 67 (1998) pp. 7385.CrossRefGoogle Scholar