Skip to main content
×
Home
    • Aa
    • Aa

Uncertainty Quantification of Derivative Instruments

  • Xianming Sun (a1) (a2) and Michèle Vanmaele (a2)
Abstract
Abstract

Model and parameter uncertainties are common whenever some parametric model is selected to value a derivative instrument. Combining the Monte Carlo method with the Smolyak interpolation algorithm, we propose an accurate efficient numerical procedure to quantify the uncertainty embedded in complex derivatives. Except for the value function being sufficiently smooth with respect to the model parameters, there are no requirements on the payoff or candidate models. Numerical tests carried out quantify the uncertainty of Bermudan put options and down-and-out put options under the Heston model, with each model parameter specified in an interval.

Copyright
Corresponding author
*Corresponding author. Email address: Xianming.Sun@hotmail.com (X. Sun), Michele.Vanmaele@ugent.be (M. Vanmaele)
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

[1] S. Assing , S. Jacka and A. Ocejo , Monotonicity of the value function for a two-dimensional optimal stopping problem, Ann. Appl. Probab. 24, 15541584 (2014).

[2] M. Avellaneda , A. Levy and A. Parás , Pricing and hedging derivative securities in markets with uncertain volatilities, Appl. Math. Financ. 2, 7388 (1995).

[3] K. Bannör and M. Scherer , Capturing parameter risk with convex risk measures, Euro. Actuar. J. 3, 97132 (2013).

[4] V. Barthelmann , E. Novak and K. Ritter , High dimensional polynomial interpolation on sparse grids, Adv. Comput. Math. 12, 273288 (2000).

[5] M. Beiglböck , P. Henry-Labordère and F. Penkner , Model-independent bounds for option prices – a mass transport approach, Financ. Stoch. 17, 477501 (2013).

[7] J. Brissaud , The meanings of entropy, Entropy 7, 6896 (2005).

[8] N. Chen and Y. Liu , American option sensitivities estimation via a generalised infinitesimal perturbation analysis approach, Oper. Res. 62, 616632 (2014).

[9] X. Chen , G. Deelstra , J. Dhaene and M. Vanmaele , Static super-replicating strategies for a class of exotic options, Insur. Math. Econ. 42, 10671085 (2008).

[10] C. Chiarella , B. Kang and G. Meyer , The evaluation of barrier option prices under stochastic volatility, Comput. Math. Appl. 64, 20342048 (2012).

[11] R. Cont , Model uncertainty and its impact on the pricing of derivative instruments, Math. Financ. 16, 519547 (2006).

[12] A. Cox and J. Obłój , Robust pricing and hedging of double no-touch options, Financ. Stoch. 15, 573605 (2011).

[14] M. Duembgen and L. Rogers , Estimate nothing, Quant. Financ. 14, 20652072 (2014).

[15] B. Eraker , Do stock prices and volatility jump? Reconciling evidence from spot and option prices, J. Financ. 59, 13671404 (2004).

[16] F. Fang and C. Oosterlee , A Fourier-based valuation method for Bermudan and barrier options under Heston's model, SIAM J. Financ. Math. 2, 439463 (2011).

[20] P. Glasserman , Monte Carlo Methods in Financial Engineering, Springer, New York (2004).

[22] A. Gupta and C. Reisinger , Robust calibration of financial models using Bayesian estimators, J. Comput. Financ. 17, 336 (2014).

[23] T. Haentjens and K. in't Hout , ADI schemes for pricing American options under the Heston Model, Appl. Math. Financ. 22, 207237 (2015).

[24] L. Hansen , Nobel Lecture: Uncertainty outside and inside economic models, J. Polit. Econ. 122, 945987 (2014).

[25] P. Hénaff and C. Martini , Model validation: Theory, practice and perspectives, J. Risk Model Validat. 5, 315 (2011).

[26] S. Heston , A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud. 6, 327343 (1993).

[27] D. Hobson , Robust hedging of the lookback option, Financ. Stoch. 2, 329347 (1998).

[29] A. Klimke and B. Wohlmuth , Algorithm 847: Spinterp: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB, ACM Trans. Math. Softw. 31, 561579 (2005).

[31] X. Lin , C. Zhang and T. Siu , Stochastic differential portfolio games for an insurer in a jump-diffusion risk process, Math. Method Oper. Res. 75, 83100 (2012).

[32] T. Lyons , Uncertain volatility and the risk-free synthesis of derivatives, Appl. Math. Financ. 2, 117133 (1995).

[33] J. Miao and X. Yang , Pricing model for convertible bonds: A mixed fractional Brownian motion with jumps, East Asian J. Appl. Math. 5, 222237 (2015).

[34] A. Narayan and D. Xiu , Constructing nested nodal sets for multivariate polynomial interpolation, SIAM J. Sci. Comput. 35, A2293A2315 (2013).

[35] A. Narayan and T. Zhou , Stochastic collocation methods on unstructured meshes, Commun. Comput. Phys. 18, 136 (2015).

[36] S. Park and A. Bera , Maximum entropy autoregressive conditional heteroskedasticity model, J. Econom. 150, 219230 (2009).

[37] B. Routledge and S. Zin , Model uncertainty and liquidity, Rev. Econom. Dyn. 12, 543566 (2009).

[38] W. Schoutens , E. Simons and J. Tistaert , A perfect calibration! Now what?, Wilmott Magazine, pp. 6678, March (2004).

[39] C. Shannon , A mathematical theory of communication, Bell Syst. Tech. J. 27, 379423 (1948).

[41] X. Tan and N. Touzi , Optimal transportation under controlled stochastic dynamics, Ann. Probab. 41, 32013240 (2013).

[42] T. Tang and T. Zhou , On discrete least-squares projection in unbounded domain with random evaluations and its application to parametric uncertainty quantification, SIAM J. Sci. Comput. 36, A2272A2295 (2014).

[44] L. von Sydow , L. Höök , E. Larsson , E. Lindström , S. Milovanović , J. Persson , V. Shcherbakov , Y. Shpolyanskiy , S. Sirén , J. Toivanen , J. Waldén , M. Wiktorsson , J. Levesley , J. Li , C. Oosterlee , M. Ruijter , A. Toropov and Y. Zhao , BENCHOP – The BENCHmarking project in option pricing, Int. J. Comput. Math. 92, 23612379 (2015).

[45] G. Wasilkowski and H. Wozniakowski , Explicit cost bounds of algorithms for multivariate tensor product problems, J. Complexity 11, 156 (1995).

[46] D. Xiu and J. Hesthaven , High-order collocation methods for differential equations with random inputs, SIAM J. Sci. Comput. 27, 11181139 (2005).

[47] Z. Xu and T. Zhou . On sparse interpolation and the design of deterministic interpolation points, SIAM J. Sci. Comput. 36, A1752A1769 (2014).

[48] P. Zeng and Y. Kwok . Pricing barrier and Bermudan style options under time-changed Lévy Processes: Fast Hilbert transform approach, SIAM J. Sci. Comput. 36, B450B485 (2014).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

East Asian Journal on Applied Mathematics
  • ISSN: 2079-7362
  • EISSN: 2079-7370
  • URL: /core/journals/east-asian-journal-on-applied-mathematics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 15 *
Loading metrics...

Abstract views

Total abstract views: 114 *
Loading metrics...

* Views captured on Cambridge Core between 2nd May 2017 - 22nd September 2017. This data will be updated every 24 hours.