Hostname: page-component-cb9f654ff-kl2l2 Total loading time: 0 Render date: 2025-08-23T05:25:09.880Z Has data issue: false hasContentIssue false

BOUNDED SUPPORT IN LINEAR RANDOM COEFFICIENT MODELS: IDENTIFICATION AND VARIABLE SELECTION

Published online by Cambridge University Press:  26 March 2024

Philipp Hermann
Affiliation:
Philipps-Universität Marburg
Hajo Holzmann*
Affiliation:
Philipps-Universität Marburg
*
Address correspondence to Hajo Holzmann, Department of Mathematics and Computer Science, Philipps-Universität Marburg, Marburg, Germany, holzmann@mathematik.uni-marburg.de.

Abstract

We consider linear random coefficient regression models, where the regressors are allowed to have a finite support. First, we investigate identification, and show that the means and the variances and covariances of the random coefficients are identified from the first two conditional moments of the response given the covariates if the support of the covariates, excluding the intercept, contains a Cartesian product with at least three points in each coordinate. We also discuss identification of higher-order mixed moments, as well as partial identification in the presence of a binary regressor. Next, we show the variable selection consistency of the adaptive LASSO for the variances and covariances of the random coefficients in finite and moderately high dimensions. This implies that the estimated covariance matrix will actually be positive semidefinite and hence a valid covariance matrix, in contrast to the estimate arising from a simple least squares fit. We illustrate the proposed method in a simulation study.

Information

Type
ARTICLES
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Arellano, M., & Bonhomme, S. (2012). Identifying distributional characteristics in random coefficients panel data models. Review of Economic Studies , 79(3), 9871020.10.1093/restud/rdr045CrossRefGoogle Scholar
Beran, R., Feuerverger, A., & Hall, P. (1996). On nonparametric estimation of intercept and slope distributions in random coefficient regression. Annals of Statistics , 24(6), 25692592.10.1214/aos/1032181170CrossRefGoogle Scholar
Beran, R., & Hall, P. (1992). Estimating coefficient distributions in random coefficient regressions. Annals of Statistics , 20(4), 19701984.10.1214/aos/1176348898CrossRefGoogle Scholar
Breunig, C., & Hoderlein, S. (2018). Specification testing in random coefficient models. Quantitative Economics , 9(3), 13711417.10.3982/QE757CrossRefGoogle Scholar
Dunker, F., Eckle, K., Proksch, K., & Schmidt-Hieber, J. (2019). Tests for qualitative features in the random coefficients model. Electronic Journal of Statistics , 13(2), 22572306.10.1214/19-EJS1570CrossRefGoogle Scholar
Gaillac, C., & Gautier, E. (2022). Adaptive estimation in the linear random coefficients model when regressors have limited variation. Bernoulli , 28, 504524.10.3150/21-BEJ1354CrossRefGoogle Scholar
Gautier, E., & Kitamura, Y. (2013). Nonparametric estimation in random coefficients binary choice models. Econometrica , 81(2), 581607.Google Scholar
Hildreth, C., & Houck, J. P. (1968). Some estimators for a linear model with random coefficients. Journal of the American Statistical Association , 63(322), 584595.10.1080/01621459.1968.11009277CrossRefGoogle Scholar
Hoderlein, S., Holzmann, H., & Meister, A. (2017). The triangular model with random coefficients. Journal of Econometrics , 201(1), 144169.10.1016/j.jeconom.2017.05.018CrossRefGoogle Scholar
Hoderlein, S., Klemelä, J., & Mammen, E. (2010). Analyzing the random coefficient model nonparametrically. Econometric Theory , 26, 804837.10.1017/S0266466609990119CrossRefGoogle Scholar
Holzmann, H., & Meister, A. (2020). Rate-optimal nonparametric estimation for random coefficient regression models. Bernoulli , 26(4), 27902814.10.3150/20-BEJ1207CrossRefGoogle Scholar
Huang, J., Ma, S., & Zhang, C.-H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statistica Sinica , 18, 16031618.Google Scholar
Ichimura, H., & Thompson, T. S. (1998). Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution. Journal of Econometrics , 86(2), 269295.10.1016/S0304-4076(97)00117-6CrossRefGoogle Scholar
Leeb, H., & Pötscher, B. (2003). The finite-sample distribution of post-model-selection estimators and uniform versus nonuniform approximations Econometric Theory , 19(1), 100142.10.1017/S0266466603191050CrossRefGoogle Scholar
Lewbel, A. (2005). Modeling heterogeneity. Working Papers in Economics, Boston College, 402.Google Scholar
Lewbel, A., & Pendakur, K. (2017). Unobserved preference heterogeneity in demand using generalized random coefficients. Journal of Political Economy , 125(4), 11001148.10.1086/692808CrossRefGoogle Scholar
Li, S., Cai, T. T., & Li, H. (2022). Inference for high-dimensional linear mixed-effects models: A quasi-likelihood approach. Journal of the American Statistical Association , 117, 18351846.10.1080/01621459.2021.1888740CrossRefGoogle ScholarPubMed
Loh, P.-L., & Wainwright, M. J. (2017). Support recovery without incoherence: A case for nonconvex regularization. Annals of Statistics , 45(6), 24552482.10.1214/16-AOS1530CrossRefGoogle Scholar
Masten, M. A. (2018). Random coefficients on endogenous variables in simultaneous equations models. Review of Economic Studies , 85(2), 11931250.10.1093/restud/rdx047CrossRefGoogle Scholar
Rigollet, P., & Hütter, J.-C. (2019). High dimensional statistics. Lecture notes for course 18S997, MIT OpenCourseWare, Cambridge.Google Scholar
Schelldorfer, J., Bühlmann, P., & van de Geer, S. (2011). Estimation for high-dimensional linear mixed-effects models using ${\ell}_1$ -penalization. Scandinavian Journal of Statistics , 38(2), 197214.10.1111/j.1467-9469.2011.00740.xCrossRefGoogle Scholar
Swamy, P. (1970). Efficient inference in a random coefficients model. Econometrica , 38, 311324.10.2307/1913012CrossRefGoogle Scholar
Thomas, E. G. (2014). A polarization identity for multilinear maps. Indagationes Mathematicae , 25(3), 468474.10.1016/j.indag.2013.11.003CrossRefGoogle Scholar
van der Vaart, A. W. (1998). Asymptotic statistics . Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press.10.1017/CBO9780511802256CrossRefGoogle Scholar
Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review , 38(1), 4995.10.1137/1038003CrossRefGoogle Scholar
Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science , volume 47. Cambridge University Press.Google Scholar
Wagener, J., & Dette, H. (2013). The adaptive lasso in high-dimensional sparse heteroscedastic models. Mathematical Methods of Statistics , 22(2), 137154.10.3103/S106653071302004XCrossRefGoogle Scholar
Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint , volume 48. Cambridge University Press.Google Scholar
Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical Association , 101(476), 14181429.10.1198/016214506000000735CrossRefGoogle Scholar
Zou, H., & Zhang, H. H. (2009). On the adaptive elastic-net with a diverging number of parameters. Annals of Statistics, 37(4), 1733.10.1214/08-AOS625CrossRefGoogle ScholarPubMed
Supplementary material: File

Hermann and Holzmann supplementary material

Hermann and Holzmann supplementary material
Download Hermann and Holzmann supplementary material(File)
File 298.1 KB