Published online by Cambridge University Press: 01 June 2009
Consider the unconditional moment restriction E[m(y, υ, w; π0)/fV|w (υ|w) −s (w; π0)] = 0, where m(·) and s(·) are known vector-valued functions of data (y┬, υ, w┬)┬. The smallest asymptotic variance that -consistent regular estimators of π0 can have is calculated when fV|w(·) is only known to be a bounded, continuous, nonzero conditional density function. Our results show that “plug-in” kernel-based estimators of π0 constructed from this type of moment restriction, such as Lewbel (1998, Econometrica 66, 105–121) and Lewbel (2007, Journal of Econometrics 141, 777–806), are semiparametric efficient.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.