Published online by Cambridge University Press: 19 August 2014
We consider an omnibus test for the correct specification of the dynamics of a sequence $\left\{ {x\left( t \right)} \right\}_{t \in Z^d } $ in a lattice. As it happens with causal models and d = 1, its asymptotic distribution is not pivotal and depends on the estimator of the unknown parameters of the model under the null hypothesis. One first main goal of the paper is to provide a transformation to obtain an asymptotic distribution that is free of nuisance parameters. Secondly, we propose a bootstrap analog of the transformation and show its validity. Thirdly, we discuss the results when
$\left\{ {x\left( t \right)} \right\}_{t \in Z^d } $ are the errors of a parametric regression model. As a by product, we also discuss the asymptotic normality of the least squares estimator of the parameters of the regression model under very mild conditions. Finally, we present a small Monte Carlo experiment to shed some light on the finite sample behavior of our test.
Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.
* Views captured on Cambridge Core between September 2016 - 23rd April 2021. This data will be updated every 24 hours.