Skip to main content
    • Aa
    • Aa

Adaptive Estimation in Time Serise Regression Models With Heteroskedasticity of Unknown Form

  • Javier Hidalgo (a1)

In a multiple time series regression model the residuals are heteroskedastic and serially correlated of unknown form. GLS estimates of the regression coefficients using kernel regression and spectral methods are shown to be adaptive, in the sense of having the same asymptotic distribution, to the first order, as GLS estimates based on knowledge of the actual heteroskedasticity and serial correlation. A Monte Carlo experiment about the performance of our estimator is described.

Hide All
1.Amemiya T. Generalized least squares with an estimated autocovariance matrix. Econometrica 41 (1973):723732.
2.Beltrao K.I. & Bloomfield P.. Determining the bandwidth of a kernel spectrum estimate. Journal of Time Series Analysis 8 (1987):2138.
3.Bickel P. On adaptive estimation. Annals of Statistics 10(1982):647671.
4.Carroll R.D. Adapting for heteroscedasticity in linear models. Annals of Statistics 10 (1982): 12241233.
5.Doukhan P. & Ghindes M. Estimations dans le processus (Xn+1 =f(Xn)+EnComptes Rendus de L'Academie des Sciences. Paris, 291 (1980):6164.
6.Duncan R.B. & Jones R. Multiple regression with stationary errors. Journal of the American Statistical Association 61 (1966):917923.
7.Eicker F. Limit theorems for regression with unequal and dependent errors. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability Vol. I Berkeley: University of California Press (1967):5982.
8.Engle R.F. & Gardner R. Some finite sample properties of spectral estimators of a linear regression. Econometrica 44 (1976): 149165.
9.Hannae E.J. Testing for a jump in the spectral function. Journal of the Royal Statistical Association Ser. B 23 (1961):394404.
10.Hannan E.J. Regression for time series. In Rosenblatt M. (ed.) Time Series Analysis. New York: Wiley, 1963, pp. 1737.
11.Hannan E.J. Multiple time series analysis. New York: Wiley, 1970.
12.Hannan E.J. Non-linear time series regression. Journal of Applied Probability 8 (1971):767780.
13.Harrison M.J. & McCabe B.P.M.. Autocorrelation with heteroscedasticity: A note on the robustness of Durbin-Watson, Geary, and Henshaw tests. Biometrika 62 (1975):214216.
14.Harvey A.C. & Robinson P.M.. Efficient estimation of nonstationary time series regression.Journal of Time Series Analysis 9 (1988):201214.
15.Hidalgo J. Adaptive semiparametric estimation in the presence of autocorrelation of unknown form. Journal of Time Series Analysis (1992) forthcoming.
16.Hidalgo J. Adaptive Estimation in Time Series Regression Models With Heteroscedasticity of Unknown Form. Preprint. Texas A&M University (1991).
17.Levine D. A remark on serial correlation in maximum likelihood. Journal ofEconometrics 23 (1983): 145194.
18.Manski C.F. Adaptive estimation of non-linear regression models (with comment). Econometric Reviews 3 (1984): 145194.
19.Nadaraya E.A. On estimating regression. Theory of Probability and Its Applications 9 (1964):141142.
20.Naimark M.A. Normed rings. Groningen: Noordhoff, 1960.
21.Newey W.K. & West K.D.. A simple, positive, semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix. Econometrica 55 (1987):703708.
22.Parzen E. On consistent estimates of the spectrum of a stationary time series. Annals of Mathematical Statistics 28 (1957):329348.
23.Pham D.T. & Tran L.T.. Some mixing properties of time series models. Stochastic Processes and Their Applications 19 (1986):297303.
24.Robinson P.M. Instrumental variable estimation of differential equations. Econometrica 44 (1976):765776.
25.Robinson P.M. Asymptotically efficient estimation in the presence of heteroscedasticity of unknown form. Econometrica 55 (1987):875891.
26.Robinson P.M. Hypothesis Testing in Semiparametric and Nonparametri c Models for Econometric Time Series. Preprint (1987).
27.Robinson P.M. Root-N-consistent semiparametric regression. Econometrica 56 (1988): 931954.
28.Robinson P.M. Automatic Generalized Least Squares. Manuscript (1988).
29.Volkonskii V.A. & Rozanov Y.A..Some limit theorems for random functions II. Theory of Probability and Its Applications 6 (1961): 186198.
30.Watson G.S. Smooth regression analysis. Sankhya, Ser. A 26 (1964):359372.
31.White H. & Domowitz I.. Nonlinear regression with dependent observations. Econometrica 52 (1984): 143161.
32.Yoshihara K. Limiting behavior of U-statistics for stationary absolutely regular processes. Zeitschrift fur WahrscheinUchkeitstheorie und Verwandte Gebiete 35 (1976):237252.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Econometric Theory
  • ISSN: 0266-4666
  • EISSN: 1469-4360
  • URL: /core/journals/econometric-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 42 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.