Hostname: page-component-65f69f4695-k2rjg Total loading time: 0 Render date: 2025-06-27T09:59:54.777Z Has data issue: false hasContentIssue false

MODEL AVERAGING FOR TREATMENT EFFECT ESTIMATION WITH HETEROGENEITY AND HETEROSKEDASTICITY

Published online by Cambridge University Press:  24 June 2025

Yuting Wei
Affiliation:
https://ror.org/02y0rxk19 Nanjing University of Information Science and Technology and University of Science and Technology of China
Guangren Yang
Affiliation:
https://ror.org/02xe5ns62 Jinan University
Zhanshou Chen
Affiliation:
https://ror.org/03az1t892 Qinghai Normal University
Xinyu Zhang*
Affiliation:
https://ror.org/02jkmyk67 University of Science and Technology of China and Academy of Mathematics and Systems Science
*
Address correspondence to Xinyu Zhang, SKLMS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, e-mail: xinyu@amss.ac.cn.

Abstract

The primary focus of this article is to capture heterogeneous treatment effects measured by the conditional average treatment effect. A model averaging estimation scheme is proposed with multiple candidate linear regression models under heteroskedastic errors, and the properties of this scheme are explored analytically. First, it is shown that our proposal is asymptotically optimal in the sense of achieving the lowest possible squared error. Second, the convergence of the weights determined by our proposal is provided when at least one of the candidate models is correctly specified. Simulation results in comparison with several related existing methods favor our proposed method. The method is applied to a dataset from a labor skills training program.

Information

Type
ARTICLES
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

We thank the Editor (Professor Peter Phillips), the Co-Editor (Professor Michael Jansson), and three anonymous referees for constructive comments which led to great improvements of the article. This work was supported in part by the National Key Research and Development Program of China under Grant 2023YFA1008704. Wei acknowledges support from the Startup Foundation for Introducing Talent of NUIST (Grant No. 2024r013) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20240690). Yang’s research was supported by the National Social Science Foundation of China (Grant Nos. 24BTJ069 and 24BTJ070) and the National Statistical Scientific Research Center Projects 2024LY009. Chen acknowledges support from National Natural Science Foundation of China (NNSFC) (Grant No. 12161072). Zhang acknowledges support from NNSFC (Grant Nos. 72525001 and 72495124) and Beijing Natural Science Foundation (Z240004).

References

REFERENCES

Abrevaya, J., Hsu, Y.-C., & Lieli, R. P. (2015). Estimating conditional average treatment effects. Journal of Business & Economic Statistics , 33, 485505.10.1080/07350015.2014.975555CrossRefGoogle Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control , 19, 716723.10.1109/TAC.1974.1100705CrossRefGoogle Scholar
Ando, T., & Li, K.-C. (2014). A model-averaging approach for high-dimensional regression. Journal of the American Statistical Association , 109, 254265.CrossRefGoogle Scholar
Andrews, D. W. (1991). Asymptotic optimality of generalized ${C}_L$ , cross-validation, and generalized cross-validation in regression with heteroskedastic errors. Journal of Econometrics , 47, 359377.CrossRefGoogle Scholar
Bhattacharya, D., & Dupas, P. (2012). Inferring welfare maximizing treatment assignment under budget constraints. Journal of Econometrics , 167, 168196.10.1016/j.jeconom.2011.11.007CrossRefGoogle Scholar
Buckland, S. T., Burnham, K. P., & Augustin, N. H. (1997). Model selection: An integral part of inference. Biometrics , 53, 603618.CrossRefGoogle Scholar
Cai, T., Tian, L., Wong, P. H., & Wei, L. J. (2011). Analysis of randomized comparative clinical trial data for personalized treatment selections. Biostatistics , 12, 270282.10.1093/biostatistics/kxq060CrossRefGoogle ScholarPubMed
Cheng, X., & Hansen, B. E. (2015). Forecasting with factor-augmented regression: A frequentist model averaging approach. Journal of Econometrics , 186, 280293.10.1016/j.jeconom.2015.02.010CrossRefGoogle Scholar
Claeskens, G., & Hjort, N. L. (2008). Model selection and model averaging . Cambridge University Press.Google Scholar
Crump, R. K., Hotz, V. J., Imbens, G. W., & Mitnik, O. A. (2008). Nonparametric tests for treatment effect heterogeneity. The Review of Economics and Statistics , 90, 389405.CrossRefGoogle Scholar
De Luca, G., Magnus, J. R., & Peracchi, F. (2018). Weighted-average least squares estimation of generalized linear models. Journal of Econometrics , 204, 117.10.1016/j.jeconom.2017.12.007CrossRefGoogle Scholar
Fang, F., Lan, W., Tong, J., & Shao, J. (2019a). Model averaging for prediction with fragmentary data. Journal of Business & Economic Statistics , 37, 517527.10.1080/07350015.2017.1383263CrossRefGoogle Scholar
Fang, F., Li, J., & Wang, J. (2019b). Optimal model averaging estimation for correlation structure in generalized estimating equations. Communications in Statistics - Simulation and Computation , 48, 15741593.10.1080/03610918.2017.1419260CrossRefGoogle Scholar
Fang, F., Li, J., & Xia, X. (2022). Semiparametric model averaging prediction for dichotomous response. Journal of Econometrics , 229, 219245.10.1016/j.jeconom.2020.09.008CrossRefGoogle Scholar
Graham, B. S. (2011). Efficiency bounds for missing data models with semiparametric restrictions. Econometrica , 79, 437452.Google Scholar
Hahn, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica , 66, 315331.CrossRefGoogle Scholar
Hansen, B. E. (2007). Least squares model averaging. Econometrica , 75, 11751189.10.1111/j.1468-0262.2007.00785.xCrossRefGoogle Scholar
Hansen, B. E. (2014). Model averaging, asymptotic risk, and regressor groups. Quantitative Economics , 5, 495530.10.3982/QE332CrossRefGoogle Scholar
Hansen, B. E., & Racine, J. S. (2012). Jackknife model averaging. Journal of Econometrics , 167, 3846.10.1016/j.jeconom.2011.06.019CrossRefGoogle Scholar
Hastie, T., Tibshirani, R., & Friedman, J. H. (2009). The elements of statistical learning: Data mining, inference, and prediction . Springer.CrossRefGoogle Scholar
Hjort, N. L., & Claeskens, G. (2003). Frequentist model average estimators. Journal of the American Statistical Association , 98, 879899.Google Scholar
Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association , 81, 945960.10.1080/01621459.1986.10478354CrossRefGoogle Scholar
Imai, K., & Ratkovic, M. (2013). Estimating treatment effect heterogeneity in randomized program evaluation. The Annals of Applied Statistics , 7, 443470.10.1214/12-AOAS593CrossRefGoogle Scholar
Lalonde, R. J. (1986). Evaluating the econometric evaluations of training programs with experimental data. American Economic Review , 76, 604620.Google Scholar
Lee, S., Okui, R., & Whang, Y.-J. (2017). Doubly robust uniform confidence band for the conditional average treatment effect function. Journal of Applied Econometrics , 32, 12071225.10.1002/jae.2574CrossRefGoogle Scholar
Li, K.-C. (1987). Asymptotic optimality for ${C}_p,{C}_L$ , cross-validation and generalized cross-validation: Discrete index set. The Annals of Statistics , 15, 958975.10.1214/aos/1176350486CrossRefGoogle Scholar
Liang, H., Zou, G., Wan, A. T. K., & Zhang, X. (2011). Optimal weight choice for frequentist model average estimators. Journal of the American Statistical Association , 106, 10531066.10.1198/jasa.2011.tm09478CrossRefGoogle Scholar
Lin, Z., & Bai, Z. (2011). Probability inequalities . Springer Science & Business Media.10.1007/978-3-642-05261-3CrossRefGoogle Scholar
Liu, C.-A. (2015). Distribution theory of the least squares averaging estimator. Journal of Econometrics , 186, 142159.10.1016/j.jeconom.2014.07.002CrossRefGoogle Scholar
Liu, Q., & Okui, R. (2013). Heteroscedasticity-robust ${C}_p$ model averaging. The Econometrics Journal , 16, 463472.10.1111/ectj.12009CrossRefGoogle Scholar
Liu, Q., Okui, R., & Yoshimura, A. (2016). Generalized least squares model averaging. Econometric Reviews , 35, 16921752.Google Scholar
Longford, N. T. (2005). Editorial: Model selection and efficiency—Is “which model…?” the right question?. Journal of the Royal Statistical Society (Series A) , 168, 469472.10.1111/j.1467-985X.2005.00366.xCrossRefGoogle Scholar
Rao, C. R. (1973). Linear statistical inference and its applications . (2nd ed.) John Wiley & Sons.10.1002/9780470316436CrossRefGoogle Scholar
Rolling, C. A., & Yang, Y. (2014). Model selection for estimating treatment effects. Journal of the Royal Statistical Society (Series B) , 76, 749769.10.1111/rssb.12043CrossRefGoogle Scholar
Rolling, C. A., Yang, Y., & Velez, D. (2019). Combining estimates of conditional treatment effects. Econometric Theory , 35, 10891110.10.1017/S0266466618000397CrossRefGoogle Scholar
Rubin, D. B. (1977). Assignment to treatment group on the basis of a covariate. Journal of Educational Statistics , 2, 126.10.3102/10769986002001001CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics , 6, 461464.Google Scholar
Tian, L., Alizadeh, A. A., Gentles, A. J., & Tibshirani, R. (2014). A simple method for estimating interactions between a treatment and a large number of covariates. Journal of the American Statistical Association , 109, 15171532.10.1080/01621459.2014.951443CrossRefGoogle Scholar
Ullah, A., & Wang, H. (2013). Parametric and nonparametric frequentist model selection and model averaging. Econometrics , 1, 157179.10.3390/econometrics1020157CrossRefGoogle Scholar
Wan, A. T., Zhang, X., & Zou, G. (2010). Least squares model averaging by Mallows criterion. Journal of Econometrics , 156, 277283.10.1016/j.jeconom.2009.10.030CrossRefGoogle Scholar
Wei, Y., & Wang, Q. (2021). Cross-validation-based model averaging in linear models with response missing at random. Statistics & Probability Letters , 171, 108990.10.1016/j.spl.2020.108990CrossRefGoogle Scholar
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica , 50, 125.Google Scholar
Xie, J., Yan, X., & Tang, N. (2021). A model-averaging method for high-dimensional regression with missing responses at random. Statistica Sinica , 31, 10051026.Google Scholar
Yan, X., Wang, H., Wang, W., Xie, J., Ren, Y., & Wang, X. (2021). Optimal model averaging forecasting in high-dimensional survival analysis. International Journal of Forecasting , 37, 11471155.Google Scholar
Yang, Y. (2001). Adaptive regression by mixing. Journal of the American Statistical Association , 96, 574588.CrossRefGoogle Scholar
Yuan, Z., & Yang, Y. (2005). Combining linear regression models: When and how?. Journal of the American Statistical Association , 100, 12021214.10.1198/016214505000000088CrossRefGoogle Scholar
Zhang, X. (2021). A new study on asymptotic optimality of least squares model averaging. Econometric Theory , 37, 388407.10.1017/S0266466620000055CrossRefGoogle Scholar
Zhang, X., & Liu, C.-A. (2019). Inference after model averaging in linear regression models. Econometric Theory , 35, 816841.10.1017/S0266466618000269CrossRefGoogle Scholar
Zhang, X., Wan, A. T., & Zou, G. (2013). Model averaging by jackknife criterion in models with dependent data. Journal of Econometrics , 174, 8294.10.1016/j.jeconom.2013.01.004CrossRefGoogle Scholar
Zhang, X., Zou, G., Liang, H., & Carroll, R. J. (2020). Parsimonious model averaging with a diverging number of parameters. Journal of the American Statistical Association , 115, 972984.10.1080/01621459.2019.1604363CrossRefGoogle ScholarPubMed
Zhao, Z., Zhang, X., Zou, G., Wan, A. T., & Tso, G. K. (2024). Model averaging for estimating treatment effects. Annals of the Institute of Statistical Mathematics , 76, 7392.10.1007/s10463-023-00876-4CrossRefGoogle Scholar