Skip to main content Accessibility help
×
×
Home

NONPARAMETRIC IDENTIFICATION OF POSITIVE EIGENFUNCTIONS

  • Timothy M. Christensen (a1)
Abstract

Important features of certain economic models may be revealed by studying positive eigenfunctions of appropriately chosen linear operators. Examples include long-run risk–return relationships in dynamic asset pricing models and components of marginal utility in external habit formation models. This paper provides identification conditions for positive eigenfunctions in nonparametric models. Identification is achieved if the operator satisfies two mild positivity conditions and a power compactness condition. Both existence and identification are achieved under a further nondegeneracy condition. The general results are applied to obtain new identification conditions for external habit formation models and for positive eigenfunctions of pricing operators in dynamic asset pricing models.

Copyright
Corresponding author
*Address correspondence to Timothy Christensen, Department of Economics, New York University, 19 W. 4th Street, 6th Floor, New York, NY 10012, USA; e-mail: timothy.christensen@nyu.edu.
References
Hide All
Alvarez, F. & Jermann, U.J. (2005) Using asset prices to measure the persistence of the marginal utility of wealth. Econometrica 73(6), 19772016.
Backus, D., Chernov, M., & Zin, S. (2014) Sources of entropy in representative agent models. Journal of Finance 69(1), 5199.
Bertholon, H., Monfort, A., & Pegoraro, F. (2008) Econometric asset pricing modelling. Journal of Financial Econometrics 6(4), 407458.
Chan, K.S. & Tong, H. (1985) On the use of the deterministic Lyapunov function for the ergodicity of stochastic difference equations. Advances in Applied Probability 17(3), 666678.
Chen, X., Chernozhukov, V., Lee, S., & Newey, W.K. (2014) Local identification of nonparametric and semiparametric models. Econometrica 82(2), 785809.
Chen, X. & Ludvigson, S.C. (2009) Land of addicts? An empirical investigation of habit-based asset pricing models. Journal of Applied Econometrics 24(7), 10571093.
Christensen, T.M. (2013) Nonparametric Stochastic Discount Factor Decomposition. Working paper, Yale University.
Darolles, S., Gourieroux, C., & Jasiak, J. (2006) Structural Laplace transform and compound autoregressive models. Journal of Time Series Analysis 27(4), 477503.
D’Haultfoeuille, X. (2011) On the completeness condition in nonparametric instrumental problems. Econometric Theory 27, 460471.
Dunford, N. & Schwartz, J.T. (1958) Linear Operators, Part I: General Theory. Interscience Publishers.
Eraker, B. (2008) Affine general equilibrium models. Management Science 54(12), 20682080.
Escanciano, J.C. & Hoderlein, S. (2012) Nonparametric Identification of Euler Equations. Working paper, Indiana University.
Fan, J. & Yao, Q. (2003) Nonlinear Time Series: Nonparametric and Parametric Methods. Springer-Verlag.
Gallant, A.R. & Tauchen, G. (1989) Seminonparametric estimation of conditionally constrained heterogeneous processes: Asset pricing applications. Econometrica 57, 10911120.
Gourieroux, C. & Jasiak, J. (2006) Autoregressive gamma processes. Journal of Forecasting 25(2), 129152.
Hansen, L.P. (2012) Dynamic valuation decomposition within stochastic economies. Econometrica 80(3), 911967.
Hansen, L.P. & Renault, E. (2010) Encyclopedia of Quantitative Finance, Chapter Pricing Kernels. Wiley.
Hansen, L.P. & Scheinkman, J.A. (2009) Long-term risk: An operator approach. Econometrica 77(1), 177234.
Hansen, L.P. & Scheinkman, J.A. (2012) Recursive utility in a Markov environment with stochastic growth. Proceedings of the National Academy of Sciences 109, 1196711972.
Hansen, L.P. & Scheinkman, J.A. (2013) Stochastic Compounding and Uncertain Valuation. Working paper, University of Chicago.
Hansen, L.P. & Singleton, K.J. (1982) Generalized instrumental variables estimation of nonlinear rational expectations models. Econometrica 50(5), 12691286.
Härdle, W., Tsybakov, A., & Yang, L. (1998) Nonparametric vector autoregression. Journal of Statistical Planning and Inference 68(2), 221245.
Kato, T. (1980) Perturbation Theory for Linear Operators. Springer-Verlag.
Kreĭn, M.G. & Rutman, M.A. (1950) Linear Operators Leaving Invariant a Cone in a Banach Space. American Mathematical Society.
Lewbel, A., Linton, O.B., & Srisuma, S. (2011) Nonparametric Euler Equation Identification and Estimation. Working paper, Boston College and London School of Economics.
Monfort, A. & Pegoraro, F. (2007) Switching VARMA term structure models. Journal of Financial Econometrics 5(1), 105153.
Ross, S.A. (2013) The recovery theorem. Journal of Finance, forthcoming.
Schaefer, H.H. (1960) Some spectral properties of positive linear operators. Pacific Journal of Mathematics 10, 10091019.
Schaefer, H.H. (1974) Banach Lattices and Positive Operators. Springer-Verlag.
Schaefer, H.H. (1999) Topological Vector Spaces. Springer-Verlag.
Severini, T.A. & Tripathi, G. (2006) Some identification issues in nonparametric linear models with endogenous regressors. Econometric Theory 22, 258278.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Econometric Theory
  • ISSN: 0266-4666
  • EISSN: 1469-4360
  • URL: /core/journals/econometric-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed