Hostname: page-component-5b777bbd6c-v47t2 Total loading time: 0 Render date: 2025-06-19T07:54:16.972Z Has data issue: false hasContentIssue false

ON THE ROBUSTNESS OF MIXTURE MODELS IN THE PRESENCE OF HIDDEN MARKOV REGIMES WITH COVARIATE-DEPENDENT TRANSITION PROBABILITIES

Published online by Cambridge University Press:  16 June 2025

Demian Pouzo
Affiliation:
https://ror.org/01an7q238 University of California
Zacharias Psaradakis*
Affiliation:
Birkbeck, https://ror.org/02mb95055 University of London
Martin Sola
Affiliation:
https://ror.org/04sxme922 Universidad Torcuato di Tella
*
Address correspondence to Zacharias Psaradakis, Birkbeck Business School, Birkbeck, University of London, London, UK, e-mail: z.psaradakis@bbk.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article studies the robustness of quasi-maximum-likelihood estimation in hidden Markov models when the regime-switching structure is misspecified. Specifically, we examine the case where the data-generating process features a hidden Markov regime sequence with covariate-dependent transition probabilities, but estimation proceeds under a simplified mixture model that assumes regimes are independent and identically distributed. We show that the parameters governing the conditional distribution of the observables can still be consistently estimated under this misspecification, provided certain regularity conditions hold. Our results highlight a practical benefit of using computationally simpler mixture models in settings where regime dependence is complex or difficult to model directly.

Type
ARTICLES
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Footnotes

The authors wish to thank Patrik Guggenberger, Peter Phillips, and two referees for their helpful comments and suggestions. For the purposes of open access, the corresponding author has applied a CC-BY public copyright licence to any accepted manuscript version arising from this submission.

References

REFERENCES

Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica , 59, 817858.10.2307/2938229CrossRefGoogle Scholar
Bates, C., & White, H. (1985). A unified theory of consistent estimation for parametric models. Econometric Theory , 1, 151178.10.1017/S0266466600011117CrossRefGoogle Scholar
Bollen, N. P. B., Gray, S. F., & Whaley, R. E. (2008). Regime switching in foreign exchange rates: Evidence from currency option prices. Journal of Econometrics , 94, 239276.10.1016/S0304-4076(99)00022-6CrossRefGoogle Scholar
Carter, A. V., & Steigerwald, D. G. (2012). Testing for regime switching: A comment. Econometrica , 80, 18091812.Google Scholar
Cho, J. S., & White, H. (2007). Testing for regime switching. Econometrica , 75, 16711720.10.1111/j.1468-0262.2007.00809.xCrossRefGoogle Scholar
Compiani, G., & Kitamura, Y. (2016). Using mixtures in econometric models: A brief review and some new results. Econometrics Journal , 19, C95C127.10.1111/ectj.12068CrossRefGoogle Scholar
Diebold, F. X., Lee, J.-H., & Weinbach, G. C. (1994). Regime switching with time-varying transition probabilities. In Hargreaves, C. P. (Ed.), Nonstationary time series analysis and cointegration (pp. 283302). Oxford University Press.10.1093/oso/9780198773917.003.0010CrossRefGoogle Scholar
Domowitz, I., & White, H. (1982). Misspecified models with dependent observations. Journal of Econometrics , 20, 3558.10.1016/0304-4076(82)90102-6CrossRefGoogle Scholar
Douc, R., & Moulines, E. (2012). Asymptotic properties of the maximum likelihood estimation in misspecified hidden Markov models. Annals of Statistics , 40, 26972732.10.1214/12-AOS1047CrossRefGoogle Scholar
Engel, C., & Hakkio, C. S. (1996). The distribution of the exchange rate in the EMS. International Journal of Finance and Economics , 1, 5567.10.1002/(SICI)1099-1158(199601)1:1<55::AID-IJFE5>3.0.CO;2-C3.0.CO;2-C>CrossRefGoogle Scholar
Engel, C., & Hamilton, J. D. (1990). Long swings in the Dollar: Are they in the data and do markets know it? American Economic Review 80, 689713.Google Scholar
Ephraim, Y., & Merhav, N. (2002). Hidden Markov processes. IEEE Transactions on Information Theory , 48, 15181569.10.1109/TIT.2002.1003838CrossRefGoogle Scholar
Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models . Springer.Google Scholar
Ghavidel, F. Z., Claesen, J., & Burzykowski, T. (2015). A nonhomogeneous hidden Markov model for gene mapping based on next-generation sequencing data. Journal of Computational Biology , 22, 178188.10.1089/cmb.2014.0258CrossRefGoogle ScholarPubMed
Gourieroux, C., Monfort, A., & Trognon, A. (1984). Pseudo maximum likelihood methods: Theory. Econometrica , 52, 681700.10.2307/1913471CrossRefGoogle Scholar
Hamilton, J. D. (2016). Macroeconomic regimes and regime shifts. In Taylor, J. B., & Uhlig, H. (Eds.), Handbook of macroeconomics (Vol. 2A, pp. 163201). North-Holland.Google Scholar
Holzmann, H., Munk, A., & Gneiting, T. (2006). Identifiability of finite mixtures of elliptical distributions. Scandinavian Journal of Statistics , 33, 753763.10.1111/j.1467-9469.2006.00505.xCrossRefGoogle Scholar
Holzmann, H., Munk, A., & Stratman, B. (2004). Identifiability of finite mixtures - with applications to circular distributions. Sankhyā , 66, 440449.Google Scholar
Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Le Cam, L. M., & Neyman, J. (Eds.), Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, pp. 221233). University of California Press.Google Scholar
Hughes, J. P., Guttorp, P., & Charles, S. P. (1999). A non-homogeneous hidden Markov model for precipitation occurrence. Applied Statistics , 48, 1530.Google Scholar
Jeanne, O., & Masson, P. (2000). Currency crises, sunspots and Markov-switching models. Journal of International Economics , 50, 327350.10.1016/S0022-1996(99)00007-0CrossRefGoogle Scholar
Komunjer, I. (2005). Quasi-maximum likelihood estimation for conditional quantiles. Journal of Econometrics , 128(1), 137164.10.1016/j.jeconom.2004.08.010CrossRefGoogle Scholar
Levine, D. (1983). A remark on serial correlation in maximum likelihood. Journal of Econometrics , 23, 337342.10.1016/0304-4076(83)90062-3CrossRefGoogle Scholar
McLachlan, G. J., & Peel, D. (2000). Finite mixture models . Wiley.10.1002/0471721182CrossRefGoogle Scholar
Mevel, L., & Finesso, L. (2004). Asymptotical statistics of misspecified hidden Markov models. IEEE Transactions on Automatic Control , 49, 11231132.10.1109/TAC.2004.831156CrossRefGoogle Scholar
Newey, W. K., & Steigerwald, D. G. (1997). Asymptotic bias for quasi-maximum-likelihood estimators in conditional heteroskedasticity models. Econometrica , 65, 587599.10.2307/2171754CrossRefGoogle Scholar
Pouzo, D., Psaradakis, Z., & Sola, M. (2022). Maximum likelihood estimation in Markov regime-switching models with covariate-dependent transition probabilities. Econometrica , 90, 16811710.10.3982/ECTA17249CrossRefGoogle Scholar
Ramesh, P., & Wilpon, J. G. (1992). Modeling state durations in hidden Markov models for automatic speech recognition. In ICASSP-92: 1992 IEEE international conference on acoustics, speech, and signal processing (Vol. 1, pp. 381384). IEEE.Google Scholar
Rydén, T., Teräsvirta, T., & Åsbrink, S. (1998). Stylized facts of daily returns series and the hidden Markov model. Journal of Applied Econometrics , 13, 217244.10.1002/(SICI)1099-1255(199805/06)13:3<217::AID-JAE476>3.0.CO;2-V3.0.CO;2-V>CrossRefGoogle Scholar
Teicher, H. (1963). Identifiability of finite mixtures. Annals of Mathematical Statistics , 36, 12651269.10.1214/aoms/1177703862CrossRefGoogle Scholar
White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica , 50, 125.10.2307/1912526CrossRefGoogle Scholar
White, H. (1994). Estimation, inference and specification analysis . Cambridge University Press.10.1017/CCOL0521252806CrossRefGoogle Scholar
Yakowitz, S. J., & Spragins, J. D. (1968). On the identifiability of finite mixtures. Annals of Mathematical Statistics , 39, 209214.10.1214/aoms/1177698520CrossRefGoogle Scholar