Skip to main content Accessibility help
×
×
Home

Partially Adaptive Estimation of Regression Models via the Generalized T Distribution

  • James B. McDonald (a1) and Whitney K. Newey (a2)
Abstract

This paper considers M-estimators of regression parameters that make use of a generalized functional form for the disturbance distribution. The family of distributions considered is the generalized t (GT), which includes the power exponential or Box-Tiao, normal, Laplace, and t distributions as special cases. The corresponding influence function is bounded and redescending for finite “degrees of freedom.” The regression estimators considered are those that maximize the GT quasi-likelihood, as well as one-step versions. Estimators of the parameters of the GT distribution and the effect of such estimates on the asymptotic efficiency of the regression estimates are discussed. We give a minimum-distance interpretation of the choice of GT parameter estimate that minimizes the asymptotic variance of the regression parameters.

Copyright
References
Hide All
1.Bates, C. & White, H.. A unified theory of consistent estimation for parametric models. Econometric Theory 1 (1985): 151178.
2.Beran, R.Minimum hellinger distance estimation of parametric models. Annals of Statistics 5 (1977): 445463.
3.Beran, R.Adaptive estimates for autoregressive processes. Annals of the Institute of Statistical Mathematics 28 (1977): 7789.
4.Bickel, P.J.One-step Huber estimates in the linear model. Journal of the American Statistical Association 70 (1975): 428434.
5.Bickel, P.J.On adaptive estimation. Annals of Statistics 10 (1982): 647671.
6.Bierens, H.J.Robust estimation and asymptotic theory in nonlinear econometrics. New York: Springer-Verlag, 1981.
7.Goldfeld, S. & Quandt, R.E.. Econometrie modeling with nonnormal disturbances. Journal of Econometrics 17 (1981): 141155.
8.Hogg, R.V.Adaptive robust procedures: a partial review and some suggestions for future applications and theory. Journal of the American Statistical Association 69 (1974): 909927.
9.Huber, P.J.Robust statistics. New York: Wiley, 1981.
10.Huber, P.J.The behavior of maximum-likelihood estimates under nonstandard conditions. Proceedings of the Fifth Berkeley Symposium 1 (1967): 221233.
11.Klein, R. & Spady, R.. Quasi-maximum likelihood as a parametric approach to robust estimation. Working paper, Bell Communications Research (1984).
12.Koenker, R.Robust estimation in econometrics. Econometric Reviews 1 (1982): 213255.
13.Loeve, M.Probability theory I. New York: Springer-Verlag, 1977.
14.Manski, C.Adaptive estimation of nonlinear regression models. Econometric Reviews 3 (1984): 145194.
15.McDonald, J.B.Some generalized functions for the size distribution of income. Econometrica 52 (1984): 647663.
16.McDonald, J.B. & Newey, W.K.. A generalized stochastic specification in econometric models. Brigham Young University mimeo (1984).
17.Missiakoulis, S.Sargan densities: which one. Journal of Econometrics 23 (1983): 223233.
18.Newey, W.K. Generic uniqueness of the population quasi-maximum likelihood parameters. mimeo, Princeton University (1986).
19.Newey, W.K.Adaptive estimation of regression models via moment restrictions. Journal of Econometrics 38 (1988): 301339.
20.Pollard, D.New ways to prove central-limit theorems. Econometric Theory 1 (1985): 295314.
21.Pötshcer, B.M. & Prucha, I.R.. A class of partially adaptive one-step M-estimators for the nonlinear regression model with dependent observations. Journal of Econometrics 25 (1986): 219251.
22.Pötshcer, B.M. & Prucha, I.R.. Consistency in nonlinear econometrics: a generic uniform law of large numbers and some comments on recent results, mimeo, University of Maryland (1986).
23.Prucha, I.R. & Kelejian, H.R.. The structure of simultaneous equations estimators: a generalization toward nonormal disturbances. Econometrica 52 (1984): 721736.
24.White, H.Nonlinear regression on cross-section data. Econometrica 48 (1980): 721746.
25.Wolfowitz, J.The minimum distance method. Annals of Mathematical Statistics 28 (1957): 7588.
26.Zeckhauser, R. & Thompson, M.. Linear regression with nonnormal error terms. Review of Economics and Statistics 52 (1970): 280286.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Econometric Theory
  • ISSN: 0266-4666
  • EISSN: 1469-4360
  • URL: /core/journals/econometric-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed