Hostname: page-component-76c49bb84f-qtd2s Total loading time: 0 Render date: 2025-07-08T19:50:57.890Z Has data issue: false hasContentIssue false

SUBVECTOR INFERENCE FOR VARYING COEFFICIENT MODELS WITH PARTIAL IDENTIFICATION

Published online by Cambridge University Press:  07 July 2025

Shengjie Hong
Affiliation:
https://ror.org/041pakw92Renmin University of China
Yu-Chin Hsu
Affiliation:
Academia Sinica, National Central University, National Chengchi University, and National Taiwan University
Yuanyuan Wan*
Affiliation:
https://ror.org/03dbr7087University of Toronto
*
Address correspondence to Yuanyuan Wan, Department of Economics, University of Toronto, 150 St. George Street, Toronto, ON, M5S3G7, Canada, e-mail: yuanyuan.wan@utoronto.ca.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article considers a general class of varying coefficient models defined by a set of moment equalities and/or inequalities, where unknown functional parameters are not necessarily point-identified. We propose an inferential procedure for a subvector of the varying parameters and establish the asymptotic validity of the resulting confidence sets uniformly over a broad family of data-generating processes. We also propose a practical specification test for a set of necessary conditions of our model. Monte Carlo studies show that the proposed methods have good finite sample properties. We apply our method to estimate the return to education in China using its 1%-population census data from 2005.

Information

Type
ARTICLES
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - ND
This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NoDerivatives licence (https://creativecommons.org/licenses/by-nd/4.0), which permits re-use, distribution, and reproduction in any medium, provided that no alterations are made and the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Footnotes

The authors are indebted to the editor Peter Phillips for constructive advice and comments, which have considerably improved the presentation of the article. The authors are grateful to the Co-Editor Xiaoxia Shi and two anonymous referees for valuable comments and suggestions on previous versions of the article. The authors also thank the comments from Mathieu Marcoux, Erhao Xie, Yaqi Wang, and seminar participants at the UNC at Chapel Hill and the Southern Economics Association Conference 2024. Shengjie Hong acknowledges the support from the NSFC Grant #72373175, #72273017, #72133002, and #72394392. Yu-Chin Hsu acknowledges the research support from the NSTC112-2628-H-001-001 Grant, the Investigator Award of the Academia Sinica (AS-IA-110-H01), and the Center for Research in Econometric Theory and Applications of NTU (#113L8601). Yuanyuan Wan acknowledges the support from the SSHRC Insight Grant #43520190500 and #43520240418.

References

REFERENCES

Ahmad, I., Leelahanon, S., & Li, Q. (2005). Efficient estimation of a semiparametric partially linear varying coefficient model. The Annals of Statistics , 33(1), 258283.10.1214/009053604000000931CrossRefGoogle Scholar
Almunia, M., Antràs, P., Lopez-Rodriguez, D., & Morales, E. (2021). Venting out: Exports during a domestic slump. American Economic Review , 111(11), 36113662.10.1257/aer.20181853CrossRefGoogle Scholar
Andrews, D. W., Berry, S., & Jia, P. (2004). Confidence regions for parameters in discrete games with multiple equilibria, with an application to discount chain store location. Manuscript, Yale University.10.2139/ssrn.3417207CrossRefGoogle Scholar
Andrews, D. W., & Guggenberger, P. (2009). Validity of subsampling and “plug-in asymptotic” inference for parameters defined by moment inequalities. Econometric Theory , 25(3), 669709.10.1017/S0266466608090257CrossRefGoogle Scholar
Andrews, D. W., & Kwon, S. (2019). Inference in moment inequality models that is robust to spurious precision under model misspecification. Discussion paper, Cowles Foundation.Google Scholar
Andrews, D. W., & Shi, X. (2013). Inference based on conditional moment inequalities. Econometrica , 81(2), 609666.Google Scholar
Andrews, D. W., & Shi, X. (2014). Nonparametric inference based on conditional moment inequalities. Journal of Econometrics , 179(1), 3145.10.1016/j.jeconom.2013.10.005CrossRefGoogle Scholar
Andrews, D. W., & Shi, X. (2017). Inference based on many conditional moment inequalities. Journal of Econometrics , 196(2), 275287.10.1016/j.jeconom.2016.09.010CrossRefGoogle Scholar
Andrews, D. W., & Soares, G. (2010). Inference for parameters defined by moment inequalities using generalized moment selection. Econometrica , 78(1), 119157.Google Scholar
Ang, A., & Liu, J. (2004). How to discount cashflows with time-varying expected returns. The Journal of Finance , 59(6), 27452783.10.1111/j.1540-6261.2004.00715.xCrossRefGoogle Scholar
Aradillas-López, A., & Gandhi, A. (2016). Estimation of games with ordered actions: An application to chain-store entry. Quantitative Economics , 7(3), 727780.10.3982/QE465CrossRefGoogle Scholar
Armstrong, T. B. (2014). Weighted KS statistics for inference on conditional moment inequalities. Journal of Econometrics , 181(2), 92116.10.1016/j.jeconom.2014.04.021CrossRefGoogle Scholar
Armstrong, T. B. (2015). Asymptotically exact inference in conditional moment inequality models. Journal of Econometrics , 186(1), 5165.10.1016/j.jeconom.2015.01.002CrossRefGoogle Scholar
Armstrong, T. B. (2018). On the choice of test statistic for conditional moment inequalities. Journal of Econometrics , 203(2), 241255.10.1016/j.jeconom.2017.10.007CrossRefGoogle Scholar
Belloni, A., Bugni, F. A., & Chernozhukov, V. (2019). Subvector inference in PI models with many moment inequalities. Working paper, Cemmap.Google Scholar
Bontemps, C., & Magnac, T. (2017). Set identification, moment restrictions, and inference. Annual Review of Economics , 9, 103129.10.1146/annurev-economics-063016-103658CrossRefGoogle Scholar
Bugni, F. A., Canay, I. A., & Shi, X. (2015). Specification tests for partially identified models defined by moment inequalities. Journal of Econometrics , 185(1), 259282.10.1016/j.jeconom.2014.10.013CrossRefGoogle Scholar
Bugni, F. A., Canay, I. A., & Shi, X. (2017). Inference for subvectors and other functions of partially identified parameters in moment inequality models. Quantitative Economics , 8(1), 138.10.3982/QE490CrossRefGoogle Scholar
Cai, Z. (2010). Functional coefficient models for economic and financial data. In Ferraty, F., & Romain, Y. (Eds.), Handbook of functional data analysis (pp. 166186). Oxford University Press.Google Scholar
Cai, Z., Chen, L., & Fang, Y. (2018). A semiparametric quantile panel data model with an application to estimating the growth effect of FDI. Journal of Econometrics , 206(2), 531553.10.1016/j.jeconom.2018.06.013CrossRefGoogle Scholar
Cai, Z., Das, M., Xiong, H., & Wu, X. (2006). Functional coefficient instrumental variables models. Journal of Econometrics , 133(1), 207241.10.1016/j.jeconom.2005.03.014CrossRefGoogle Scholar
Cai, Z., Fan, J., & Li, R. (2000). Efficient estimation and inferences for varying-coefficient models. Journal of the American Statistical Association , 95(451), 888902.10.1080/01621459.2000.10474280CrossRefGoogle Scholar
Cai, Z., Fang, Y., Lin, M., & Su, J. (2019). Inferences for a partially varying coefficient model with endogenous regressors. Journal of Business & Economic Statistics , 37(1), 158170.10.1080/07350015.2017.1294079CrossRefGoogle Scholar
Cai, Z., & Hong, Y. (2009). Some recent developments in nonparametric finance. In Q. Li & J. S. Racine (Eds.), Nonparametric econometric methods (pp. 379432). Emerald Group Publishing Limited.10.1108/S0731-9053(2009)0000025015CrossRefGoogle Scholar
Cai, Z., Ren, Y., & Yang, B. (2015). A semiparametric conditional capital asset pricing model. Journal of Banking & Finance , 61, 117126.10.1016/j.jbankfin.2015.09.002CrossRefGoogle Scholar
Cai, Z., & Xu, X. (2008). Nonparametric quantile estimations for dynamic smooth coefficient models. Journal of the American Statistical Association , 103(484), 15951608.10.1198/016214508000000977CrossRefGoogle Scholar
Canay, I. A., & Shaikh, A. M. (2017). Practical and theoretical advances in inference for partially identified models. Advances in Economics and Econometrics , 2, 271306.10.1017/9781108227223.009CrossRefGoogle Scholar
Card, D. (2001). Estimating the return to schooling: Progress on some persistent econometric problems. Econometrica , 69(5), 11271160.10.1111/1468-0262.00237CrossRefGoogle Scholar
Chaney, T. (2018). The gravity equation in international trade: An explanation. Journal of Political Economy , 126(1), 150177.10.1086/694292CrossRefGoogle Scholar
Chen, R., & Tsay, R. S. (1993). Functional-coefficient autoregressive models. Journal of the American Statistical Association , 88(421), 298308.10.1080/01621459.1993.10594322CrossRefGoogle Scholar
Chernozhukov, V., Hong, H., & Tamer, E. (2007). Estimation and confidence regions for parameter sets in econometric models 1. Econometrica , 75(5), 12431284.10.1111/j.1468-0262.2007.00794.xCrossRefGoogle Scholar
Chernozhukov, V., Kim, W., Lee, S., & Rosen, A. M. (2015). Implementing intersection bounds in Stata. The Stata Journal , 15(1), 2144.10.1177/1536867X1501500103CrossRefGoogle Scholar
Chernozhukov, V., Lee, S., & Rosen, A. M. (2013). Intersection bounds: Estimation and inference. Econometrica , 81(2), 667737.Google Scholar
Chernozhukov, V., Newey, W. K., & Santos, A. (2023). Constrained conditional moment restriction models. Econometrica , 91(2), 709736.10.3982/ECTA13830CrossRefGoogle Scholar
Ciliberto, F., & Tamer, E. (2009). Market structure and multiple equilibria in airline markets. Econometrica , 77(6), 17911828.Google Scholar
Dingel, J. I. (2017). The determinants of quality specialization. The Review of Economic Studies , 84(4), 15511582.Google Scholar
Fan, J., & Li, R. (2004). New estimation and model selection procedures for semiparametric modeling in longitudinal data analysis. Journal of the American Statistical Association , 99(467), 710723.10.1198/016214504000001060CrossRefGoogle Scholar
Fan, J., & Zhang, J.-T. (2000). Two-step estimation of functional linear models with applications to longitudinal data. Journal of the Royal Statistical Society: Series B (Statistical Methodology) , 62(2), 303322.10.1111/1467-9868.00233CrossRefGoogle Scholar
Fan, J., & Zhang, W. (1999). Statistical estimation in varying coefficient models. The Annals of Statistics , 27(5), 14911518.10.1214/aos/1017939139CrossRefGoogle Scholar
Hastie, T., & Tibshirani, R. (1993). Varying-coefficient models. Journal of the Royal Statistical Society: Series B (Methodological) , 55(4), 757779.10.1111/j.2517-6161.1993.tb01939.xCrossRefGoogle Scholar
Heckman, J. J. (2005). China’s human capital investment. China Economic Review , 16(1), 5070.10.1016/j.chieco.2004.06.012CrossRefGoogle Scholar
Heckman, J. J., & Li, X. (2004). Selection bias, comparative advantage and heterogeneous returns to education: Evidence from China in 2000. Pacific Economic Review , 9(3), 155171.10.1111/j.1468-0106.2004.00242.xCrossRefGoogle Scholar
Honda, T. (2004). Quantile regression in varying coefficient models. Journal of Statistical Planning and Inference , 121(1), 113125.10.1016/S0378-3758(03)00110-1CrossRefGoogle Scholar
Hong, S. (2017). Inference in semiparametric conditional moment models with partial identification. Journal of Econometrics , 196(1), 156179.10.1016/j.jeconom.2016.09.014CrossRefGoogle Scholar
Hsu, Y.-C. (2016). Multiplier bootstrap for empirical processes. Discussion paper, Institute of Economics, Academia Sinica.Google Scholar
Hsu, Y.-C., & Shi, X. (2017). Model-selection tests for conditional moment restriction models. The Econometrics Journal , 20(1), 5285.10.1111/ectj.12081CrossRefGoogle Scholar
Huber, M., & Mellace, G. (2015). Testing instrument validity for LATE identification based on inequality moment constraints. Review of Economics and Statistics , 97(2), 398411.10.1162/REST_a_00450CrossRefGoogle Scholar
Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of Econometrics , 142(2), 615635.10.1016/j.jeconom.2007.05.001CrossRefGoogle Scholar
Imbens, G. W., & Manski, C. F. (2004). Confidence intervals for partially identified parameters. Econometrica , 72(6), 18451857.10.1111/j.1468-0262.2004.00555.xCrossRefGoogle Scholar
Kaido, H. (2017). Asymptotically efficient estimation of weighted average derivatives with an interval censored variable. Econometric Theory , 33(5), 12181241.10.1017/S0266466616000384CrossRefGoogle Scholar
Kaido, H., Molinari, F., & Stoye, J. (2019). Confidence intervals for projections of partially identified parameters. Econometrica , 87(4), 13971432.10.3982/ECTA14075CrossRefGoogle Scholar
Kédagni, D., & Mourifié, I. (2020). Generalized instrumental inequalities: testing the instrumental variable independence assumption. Biometrika , 107(3), 661675.10.1093/biomet/asaa003CrossRefGoogle Scholar
Kim, K. I. (2008). Set estimation and inference with models characterized by conditional moment inequalities. Working paper.Google Scholar
Kitagawa, T. (2015). A test for instrument validity. Econometrica , 83(5), 20432063.10.3982/ECTA11974CrossRefGoogle Scholar
Lee, S., Song, K., & Whang, Y.-J. (2013). Testing functional inequalities. Journal of Econometrics , 172(1), 1432.10.1016/j.jeconom.2012.08.006CrossRefGoogle Scholar
Li, Q., Huang, C. J., Li, D., & Fu, T.-T. (2002). Semiparametric smooth coefficient models. Journal of Business & Economic Statistics , 20(3), 412422.10.1198/073500102288618531CrossRefGoogle Scholar
Liu, S., Mourifié, I., & Wan, Y. (2020). Two-way exclusion restrictions in models with heterogeneous treatment effects. The Econometrics Journal , 23(3), 345362.10.1093/ectj/utaa013CrossRefGoogle Scholar
Manski, C. F., & Tamer, E. (2002). Inference on regressions with interval data on a regressor or outcome. Econometrica , 70(2), 519546.10.1111/1468-0262.00294CrossRefGoogle Scholar
Marcoux, M., Russell, T. M., & Wan, Y. (2024). A simple specification test for models with many conditional moment inequalities. Journal of Econometrics , 242(1), 105788.10.1016/j.jeconom.2024.105788CrossRefGoogle Scholar
Mayer, T., & Zignago, S. (2011). Notes on CEPII’s distances measures: The GeoDist database. Working paper 2011-25, CEPII Research Center.10.2139/ssrn.1994531CrossRefGoogle Scholar
Menzel, K. (2014). Consistent estimation with many moment inequalities. Journal of Econometrics , 182(2), 329350.10.1016/j.jeconom.2014.05.016CrossRefGoogle Scholar
Morales, E., Sheu, G., & Zahler, A. (2019). Extended gravity. The Review of Economic Studies , 86(6), 26682712.10.1093/restud/rdz007CrossRefGoogle Scholar
Mourifié, I., & Wan, Y. (2017). Testing local average treatment effect assumptions. Review of Economics and Statistics , 99(2), 305313.10.1162/REST_a_00622CrossRefGoogle Scholar
Nevo, A., & Rosen, A. M. (2012). Identification with imperfect instruments. Review of Economics and Statistics , 94(3), 659671.10.1162/REST_a_00171CrossRefGoogle Scholar
Pakes, A., Porter, J., Ho, K., & Ishii, J. (2015). Moment inequalities and their application. Econometrica , 83(1), 315334.10.3982/ECTA6865CrossRefGoogle Scholar
Romano, J. P., & Shaikh, A. M. (2008). Inference for identifiable parameters in partially identified econometric models. Journal of Statistical Planning and Inference , 138(9), 27862807.10.1016/j.jspi.2008.03.015CrossRefGoogle Scholar
Romano, J. P., & Shaikh, A. M. (2010). Inference for the identified set in partially identified econometric models. Econometrica , 78(1), 169211.Google Scholar
Santos, A. (2012). Inference in nonparametric instrumental variables with partial identification. Econometrica , 80(1), 213275.Google Scholar
Schultz, T. P. (2003). Human capital, schooling and health. Economics & Human Biology , 1(2), 207221.10.1016/S1570-677X(03)00035-2CrossRefGoogle Scholar
Su, L., Murtazashvili, I., & Ullah, A. (2013). Local linear GMM estimation of functional coefficient IV models with an application to estimating the rate of return to schooling. Journal of Business & Economic Statistics , 31(2), 184207.10.1080/07350015.2012.754314CrossRefGoogle Scholar
Sun, Z. (2023). Instrument validity for heterogeneous causal effects. Journal of Econometrics , 237(2), 105523.10.1016/j.jeconom.2023.105523CrossRefGoogle Scholar
Tao, J. (2015). On the asymptotic theory for semiparametric GMM models with partial identification. Discussion paper.Google Scholar
Van Der Vaart, A. W., & Wellner, J. A. (1996). Weak convergence and empirical processes: With applications to statistics . Springer.10.1007/978-1-4757-2545-2CrossRefGoogle Scholar
Wan, Y. (2013). An integration-based approach to moment inequality models. Manuscript, University of Toronto.Google Scholar