Hostname: page-component-cb9f654ff-c75p9 Total loading time: 0 Render date: 2025-08-17T17:47:17.123Z Has data issue: false hasContentIssue false

THREE-DIMENSIONAL FACTOR MODELS WITH GLOBAL AND LOCAL FACTORS

Published online by Cambridge University Press:  11 August 2025

Xun Lu
Affiliation:
https://ror.org/00t33hh48 Chinese University of Hong Kong
Sainan Jin
Affiliation:
https://ror.org/03cve4549 Tsinghua University
Liangjun Su*
Affiliation:
https://ror.org/03cve4549 Tsinghua University
*
Address correspondence to Liangjun Su, School of Economics and Management, Tsinghua University, Beijing, China, e-mail: sulj@sem.tsinghua.edu.cn.

Abstract

This article considers a three-dimensional latent factor model in the presence of one set of global factors and two sets of local factors. We show that the numbers of global and local factors can be estimated uniformly and consistently. Given the number of global and local factors, we propose a two-step estimation procedure based on principal component analysis (PCA) and establish the asymptotic properties of the PCA estimators. Monte Carlo simulations demonstrate that they perform well in finite samples. An application to the dataset of international trade reveals the relative importance of different types of factors.

Information

Type
ARTICLES
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

The authors thank the Editor, Peter C.B. Phillips, a Co-Editor, and two anonymous referees for their constructive comments. Lu acknowledges support from the Hong Kong Research Grants Council (RGC) under grant number 14500121 and Chinese University of Hong Kong for the start-up fund. Su thanks the National Natural Science Foundation of China (NSFC) for financial support under the grant number 72133002. All errors are the authors’ sole responsibilities.

References

REFERENCES

Ahn, S. C., & Horenstein, A. R. (2013). Eigenvalue ratio test for the number of factors. Econometrica , 81(3), 12031227.Google Scholar
Anderson, J. E., & van Wincoop, E. (2003). Gravity with gravitas: A solution to the border puzzle. American Economic Review , 93(1), 170192.10.1257/000282803321455214CrossRefGoogle Scholar
Ando, T., & Bai, J. (2017). Clustering huge number of financial time series: A panel data approach with high-dimensional predictors and factor structures. Journal of the American Statistical Association , 112(519), 11821198.10.1080/01621459.2016.1195743CrossRefGoogle Scholar
Andrade, P., & Zachariadis, M. (2016). Global versus local shocks in micro price dynamics. Journal of International Economics , 98, 7892.10.1016/j.jinteco.2015.10.005CrossRefGoogle Scholar
Andreou, E., Gagliardini, P., Ghysels, E., & Rubin, M. (2019). Inference in group factor models with an application to mixed-frequency data. Econometrica , 87(4), 12671305.10.3982/ECTA14690CrossRefGoogle Scholar
Babii, A., Ghysels, E., & Pan, J. (2024). Tensor principal component analysis. Working Paper.Google Scholar
Bai, J. (2003). Inferential theory for factor models of large dimensions. Econometrica , 71(1), 135171.10.1111/1468-0262.00392CrossRefGoogle Scholar
Bai, J. (2009). Panel data models with interactive fixed effects. Econometrica , 77(4), 12291279.Google Scholar
Bai, J., & Ng, S. (2002). Determining the number of factors in approximate factor models. Econometrica , 70(1), 191221.10.1111/1468-0262.00273CrossRefGoogle Scholar
Bai, J., & Ng, S. (2004). A panic attack on unit roots and cointegration. Econometrica , 72(4), 11271177.10.1111/j.1468-0262.2004.00528.xCrossRefGoogle Scholar
Bai, J., & Ng, S. (2006). Confidence intervals for diffusion index forecasts and inference for factor-augmented regressions. Econometrica , 74(4), 11331150.10.1111/j.1468-0262.2006.00696.xCrossRefGoogle Scholar
Bai, J., & Ng, S. (2013). Principal components estimation and identification of static factors. Journal of Econometrics , 176(1), 1829.10.1016/j.jeconom.2013.03.007CrossRefGoogle Scholar
Bai, J., & Ng, S. (2023). Approximate factor models with weaker loadings. Journal of Econometrics , 235(2), 18931916.10.1016/j.jeconom.2023.01.027CrossRefGoogle Scholar
Bai, J., & Wang, P. (2016). Econometric analysis of large factor models. Annual Review of Economics , 8, 5380.10.1146/annurev-economics-080315-015356CrossRefGoogle Scholar
Bai, Z., & Saranadasa, H. (1996). Effect of high dimension: An example of a two sample problem. Statistica Sinica , 6(2), 311329.Google Scholar
Baier, S. L., & Bergstrand, J. H. (2001). The growth of world trade: Tariffs, transport costs, and income similarity. Journal of International Economics , 53(1), 127.10.1016/S0022-1996(00)00060-XCrossRefGoogle Scholar
Bernard, A. B., Dhyne, E., Magerman, G., Manova, K., & Moxnes, A. (2022). The origins of firm heterogeneity: A production network approach. Journal of Political Economy , 130(7), 17651804.10.1086/719759CrossRefGoogle Scholar
Breitung, J., & Eickmeier, S. (2016). Analyzing international business and financial cycles using multi-level factor models: A comparison of alternative approaches. In E. Hillebrand & S. J. Koopman (Eds.), Dynamic factor models (vol. 35, pp. 177214). Emerald Group Publishing Limited.Google Scholar
Chen, B., Han, Y., & Yu, Q. (2024). Estimation and inference for CP tensor factor models. arXiv preprint arXiv:2406.17278.Google Scholar
Chen, E. Y., Tsay, R. S., & Chen, R. (2020). Constrained factor models for high-dimensional matrix-variate time series. Journal of the American Statistical Association , 115(530), 775793.10.1080/01621459.2019.1584899CrossRefGoogle Scholar
Chen, M. (2023). Circularly projected common factors for grouped data. Journal of Business & Economic Statistics , 41(2), 636649.10.1080/07350015.2022.2051520CrossRefGoogle Scholar
Chen, Q., & Fang, Z. (2019). Improved inference on the rank of a matrix. Quantitative Economics , 10(4), 17871824.10.3982/QE1139CrossRefGoogle Scholar
Chen, R., Yang, D., & Zhang, C.-H. (2022). Factor models for high-dimensional tensor time series. Journal of the American Statistical Association , 117(537), 94116.10.1080/01621459.2021.1912757CrossRefGoogle Scholar
Chen, S. X., & Qin, Y.-L. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. The Annals of Statistics , 38(2), 808835.10.1214/09-AOS716CrossRefGoogle Scholar
Cheng, X., & Hansen, B. E. (2015). Forecasting with factor-augmented regression: A frequentist model averaging approach. Journal of Econometrics , 186(2), 280293.10.1016/j.jeconom.2015.02.010CrossRefGoogle Scholar
Cheng, X., Liao, Z., & Schorfheide, F. (2016). Shrinkage estimation of high-dimensional factor models with structural instabilities. The Review of Economic Studies , 83(4), 15111543.10.1093/restud/rdw005CrossRefGoogle Scholar
Chiang, H. D., Rodrigue, J., & Sasaki, Y. (2023). Post-selection inference in three-dimensional panel data. Econometric Theory , 39(3), 623658.10.1017/S0266466622000081CrossRefGoogle Scholar
Choi, I., Kim, D., Kim, Y. J., & Kwark, N.-S. (2018). A multilevel factor model: Identification, asymptotic theory and applications. Journal of Applied Econometrics , 33(3), 355377.10.1002/jae.2611CrossRefGoogle Scholar
Choi, I., Lin, R., & Shin, Y. (2023). Canonical correlation-based model selection for the multilevel factors. Journal of Econometrics , 233(1), 2244.10.1016/j.jeconom.2021.09.008CrossRefGoogle Scholar
Chudik, A., & Pesaran, M. H. (2015). Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. Journal of Econometrics , 188(2), 393420.10.1016/j.jeconom.2015.03.007CrossRefGoogle Scholar
Dhyne, E., Kikkawa, A. K., Mogstad, M., & Tintelnot, F. (2021). Trade and domestic production networks. The Review of Economic Studies , 88(2), 643668.10.1093/restud/rdaa062CrossRefGoogle Scholar
Dias, F., Pinheiro, M., & Rua, A. (2013). Determining the number of global and country-specific factors in the euro area. Studies in Nonlinear Dynamics and Econometrics , 17(5), 573617.Google Scholar
Fan, J., Ke, Y., & Liao, Y. (2016a). Robust factor models with explanatory proxies. arXiv preprint arXiv:1603.07041.10.2139/ssrn.2753404CrossRefGoogle Scholar
Fan, J., Liao, Y., & Wang, W. (2016b). Projected principal component analysis in factor models. The Annals of Statistics , 44(1), 219254.10.1214/15-AOS1364CrossRefGoogle Scholar
Fan, J., Liao, Y., & Mincheva, M. (2013). Large covariance estimation by thresholding principal orthogonal complements. Journal of the Royal Statistical Society. Series B, Statistical Methodology , 75(4), 603680.10.1111/rssb.12016CrossRefGoogle ScholarPubMed
Feenstra, R. C. (2015). Advanced international trade: Theory and evidence . Princeton University Press.Google Scholar
Feng, G., Gao, J., Liu, F., & Peng, B. (2024). Estimation and inference for three-dimensional panel data models. arXiv preprint arXiv:2404.08365.Google Scholar
Freeman, H. (2022). Multidimensional interactive fixed-effects. arXiv preprint arXiv:2209.11691.Google Scholar
Gao, Z., & Tsay, R. S. (2023). Divide-and-conquer: A distributed hierarchical factor approach to modeling large-scale time series data. Journal of the American Statistical Association , 118(544), 26982711.10.1080/01621459.2022.2071279CrossRefGoogle Scholar
Giglio, S., & Xiu, D. (2021). Asset pricing with omitted factors. Journal of Political Economy , 129(7), 19471990.10.1086/714090CrossRefGoogle Scholar
Han, X. (2021). Shrinkage estimation of factor models with global and group-specific factors. Journal of Business & Economic Statistics , 39(1), 117.10.1080/07350015.2019.1617157CrossRefGoogle Scholar
Han, Y., Yang, D., Zhang, C.-H., & Chen, R. (2024). CP factor model for dynamic tensors. Journal of the Royal Statistical Society Series B: Statistical Methodology , 86(5), 13831413.10.1093/jrsssb/qkae036CrossRefGoogle Scholar
He, Y., Kong, X., Yu, L., Zhang, X., & Zhao, C. (2024). Matrix factor analysis: From least squares to iterative projection. Journal of Business & Economic Statistics , 42(1), 322334.10.1080/07350015.2023.2191676CrossRefGoogle Scholar
Head, K., & Mayer, T. (2014). Gravity equations: Workhorse, toolkit, and cookbook. In G. Gopinath, E. Helpman, & K. Rogoff (Eds.), Handbook of international economics (vol. 4, pp. 131195). Elsevier.Google Scholar
Jin, S., Lu, X., & Su, L. (2025). Three-dimensional heterogeneous panel data models with multi-level interactive fixed effects. Journal of Econometrics , 249(2), 105957.10.1016/j.jeconom.2025.105957CrossRefGoogle Scholar
Kapetanios, G., Serlenga, L., & Shin, Y. (2021). Estimation and inference for multi-dimensional heterogeneous panel datasets with hierarchical multi-factor error structure. Journal of Econometrics , 220(2), 504531.10.1016/j.jeconom.2020.04.011CrossRefGoogle Scholar
Kelly, B. T., Pruitt, S., & Su, Y. (2019). Characteristics are covariances: A unified model of risk and return. Journal of Financial Economics , 134(3), 501524.10.1016/j.jfineco.2019.05.001CrossRefGoogle Scholar
Kleibergen, F., & Paap, R. (2006). Generalized reduced rank tests using the singular value decomposition. Journal of Econometrics , 133(1), 97126.10.1016/j.jeconom.2005.02.011CrossRefGoogle Scholar
Koren, M., & Tenreyro, S. (2007). Volatility and development. The Quarterly Journal of Economics , 122(1), 243287.10.1162/qjec.122.1.243CrossRefGoogle Scholar
Latała, R. (2005). Some estimates of norms of random matrices. Proceedings of the American Mathematical Society , 133(5), 12731282.10.1090/S0002-9939-04-07800-1CrossRefGoogle Scholar
Lettau, M. (2022). High-dimensional factor models with an application to mutual fund characteristics. Technical report, National Bureau of Economic Research.10.3386/w29833CrossRefGoogle Scholar
Lu, X., Miao, K., & Su, L. (2021). Determination of different types of fixed effects in three-dimensional panels. Econometric Reviews , 40(9), 867898.10.1080/07474938.2021.1889176CrossRefGoogle Scholar
Lu, X., & Su, L. (2016). Shrinkage estimation of dynamic panel data models with interactive fixed effects. Journal of Econometrics , 190(1), 148175.10.1016/j.jeconom.2015.09.005CrossRefGoogle Scholar
Ma, S., Lan, W., Su, L., & Tsai, C.-L. (2020). Testing alphas in conditional time-varying factor models with high-dimensional assets. Journal of Business & Economic Statistics , 38(1), 214227.10.1080/07350015.2018.1482758CrossRefGoogle Scholar
Matyas, L. (2017). The econometrics of multi-dimensional panels . Springer.10.1007/978-3-319-60783-2CrossRefGoogle Scholar
Moench, E., & Ng, S. (2011). A hierarchical factor analysis of us housing market dynamics. Econometrics Journal , 14(1), 124.10.1111/j.1368-423X.2010.00319.xCrossRefGoogle Scholar
Moench, E., Ng, S., & Potter, S. (2013). Dynamic hierarchical factor models. The Review of Economics and Statistics , 95(5), 18111817.10.1162/REST_a_00359CrossRefGoogle Scholar
Moon, H. R., & Weidner, M. (2015). Linear regression for panel with unknown number of factors as interactive fixed effects. Econometrica , 83(4), 15431579.10.3982/ECTA9382CrossRefGoogle Scholar
Moon, H. R., & Weidner, M. (2017). Dynamic linear panel regression models with interactive fixed effects. Econometric Theory , 33(1), 158195.10.1017/S0266466615000328CrossRefGoogle Scholar
Onatski, A. (2010). Determining the number of factors from empirical distribution of eigenvalues. The Review of Economics and Statistics , 92(4), 10041016.10.1162/REST_a_00043CrossRefGoogle Scholar
Onatski, A. (2012). Asymptotics of the principal components estimator of large factor models with weakly influential factors. Journal of Econometrics , 168(2), 244258.10.1016/j.jeconom.2012.01.034CrossRefGoogle Scholar
Pesaran, M. H. (2006). Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica , 74(4), 9671012.10.1111/j.1468-0262.2006.00692.xCrossRefGoogle Scholar
Santos Silva, J., & Tenreyro, S. (2006). The log of gravity. The Review of Economics and Statistics , 88(4), 641658.10.1162/rest.88.4.641CrossRefGoogle Scholar
Stock, J. H., & Watson, M. W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics , 20(2), 147162.10.1198/073500102317351921CrossRefGoogle Scholar
Su, L., & Ju, G. (2018). Identifying latent grouped patterns in panel data models with interactive fixed effects. Journal of Econometrics , 206(2), 554573.10.1016/j.jeconom.2018.06.014CrossRefGoogle Scholar
Vershynin, R. (2011). Spectral norm of products of random and deterministic matrices. Probability Theory and Related Fields , 150(3–4), 471509.10.1007/s00440-010-0281-zCrossRefGoogle Scholar
Vershynin, R. (2012). Introduction to the non-asymptotic analysis of random matrices. In Y. C. Eldar & G. Kutyniok (Eds.), Compressed sensing, theory and applications (pp. 210268). Cambridge University Press.10.1017/CBO9780511794308.006CrossRefGoogle Scholar
Wang, D., Liu, X., & Chen, R. (2019). Factor models for matrix-valued high-dimensional time series. Journal of Econometrics , 208(1), 231248.10.1016/j.jeconom.2018.09.013CrossRefGoogle Scholar
Wang, P. (2014). Large dimensional factor models with a multi-level factor structure: identification, estimation and inference. Technical report, Hong Kong University of Science and Technology.Google Scholar
Yang, Y., & Schmidt, P. (2021). An econometric approach to the estimation of multi-level models. Journal of Econometrics , 220(2), 532543.10.1016/j.jeconom.2020.04.012CrossRefGoogle Scholar
Yu, L., He, Y., Kong, X., & Zhang, X. (2022). Projected estimation for large-dimensional matrix factor models. Journal of Econometrics , 229(1), 201217.10.1016/j.jeconom.2021.04.001CrossRefGoogle Scholar
Supplementary material: File

Lu et al. supplementary material

Lu et al. supplementary material
Download Lu et al. supplementary material(File)
File 1.2 MB