Skip to main content
×
×
Home

Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay

  • Pablo Galeano (a1) (a2), Claudio Martínez Debat (a3), Fabiana Ruibal (a3), Laura Franco Fraguas (a2) and Guillermo A. Galván (a1)...
Abstract

The cultivation of genetically modified (GM) Bt maize (Zea mays L.) events MON810 and Bt11 is permitted in Uruguay. Local regulations specify that 10% of the crop should be a non-GM cultivar as refuge area for biodiversity, and the distance from other non-GM maize crops should be more than 250 m in order to avoid cross-pollination. However, the degree of cross-fertilization between maize crops in Uruguay is unknown. The level of adventitious presence of GM material in non-GM crops is a relevant issue for organic farming, in situ conservation of genetic resources and seed production. In the research reported here, the occurrence and frequency of cross-fertilization between commercial GM and non-GM maize crops in Uruguay was assessed. The methodology comprised field sampling and detection using DAS-ELISA and PCR. Five field-pair cases where GM maize crops were grown near non-GM maize crops were identified. These cases had the potential to cross-fertilize considering the distance between crops and the similarity of the sowing dates. Adventitious presence of GM material in the offspring of non-GM crops was found in three of the five cases. Adventitious presence of event MON810 or Bt11 in non-GM maize, which were distinguished using specific primers, matched the events in the putative sources of transgenic pollen. Percentages of transgenic seedlings in the offspring of the non-GM crops were estimated as 0.56%, 0.83% and 0.13% for three sampling sites with distances of respectively 40, 100 and 330 m from the GM crops. This is a first indication that adventitious presence of transgenes in non-GM maize crops will occur in Uruguay if isolation by distance and/or time is not provided. These findings contribute to the evaluation of the applicability of the “regulated coexistence policy” in Uruguay.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Cross-fertilization between genetically modified and non-genetically modified maize crops in Uruguay
      Available formats
      ×
Copyright
Corresponding author
Corresponding author: pgaleano@fq.edu.uy
References
Hide All
[1]Burris JS (2001) Adventitious pollen intrusion into hybrid maize seed production fields. Proc. 56th Annual Corn and Sorghum Research Conference 2001, American Seed Trade Association, Inc., Washington, DC
[2] Dellaporta, SL, Wood, J, Hicks, JB (1983) A plant DNA minipreparation: version II. Plant Mol. Biol. Rep. 1: 1921
[3] Devos, Y, Reheul, D, De Schrijver, A (2005) The co-existence between transgenic and non-transgenic maize in the European Union: a focus on pollen flow and cross-fertilization. Environ. Biosafety Res. 4: 7187
[4]Devos, Y, Demont, M, Dillen, K, Reheul, D, Kaiser, M, Sanvido, O (2009) Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review. Agron. Sustain. Dev. 29: 1130
[5] Doebley, J (1990) Molecular evidence for gene flow among Zea species-genes transformed into maize through genetic-engineering would be transferred to its wild relatives, the teosintes. Bioscience 40: 443448
[6]Emberlin J, Adams-Groom B, Tidmarsh J (1999) A report on the dispersal of maize pollen. National Pollen Research Unit, University College, Worcester. Report commissioned by and available from the Soil Association, Bristol House, Bristol, 40–56
[7]FAO/WHO (2002) Consideration of methods for the detection and identification of foods derived from biotechnology. Methods submitted by the ad-hoc intergovernmental task force on foods derived from biotechnology. Codex Alimentarius Commission. Budapest, Hungary, 36 p
[8]INASE (2008) Available at http://www.inase.org.uy
[9]Jørgensen RB, Wilkinson MJ (2005) Rare hybrids and methods for their detection. In Poppy GM, Wilkinson MJ, eds, Gene flow from GM plants, Blackwell, Oxford, pp 113–142
[10] Langhof, M, Hommel, B, Hüsken, A, Njontie, C, Schiemann, J, Wehling, P, Wilhelm, R, Rühl, G (2010) Coexistence in maize: isolation distance in dependence on conventional maize field depth and separate edge harvest. Crop Sci. 50: 14961508
[11] Luna, S, Figueroa, J, Baltazar, B, Gomez, R, Townsend, R, Schoper, JB (2001) Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci. 41: 15511557
[12] Ma, BL, Subedi, KD, Reid, LM (2004) Extent of cross-fertilization in maize by pollen from neighboring transgenic hybrids. Crop Sci. 44: 12731282
[13] Messeguer, J, Penas, G, Ballester, J, Bas, M, Serra, J, Salvia, J (2006) Pollen-mediated geneflow in maize in real situations of coexistence. Plant Biotech. J. 4: 633645
[14]MGAP (2008) Encuesta Agrícola “Invierno 2008” DIEA, Ministerio de Ganadería, Agricultura y Pesca, Uruguay. Available at www.mgap.gub.uy
[15]Montesinos López, OA, Montesinos López, A, Crossa, J, Eskridge, K, Hernández Suárez, CM, (2010) Sample size for detecting and estimating the proportion of transgenic plants with narrow confidence intervals. Seed Sc. Res. 20: 123136
[16] Piñeyro-Nelson, A, van Heerwaarden, J, Perales, HR, Serratos-Hernández, JA, Rangel, A, Hufford, MB, Gepts, P, Garay-Arroyo, A, Rivera Bustamante, R, Alvarez Buylla, ER, (2009) Transgenes in Mexican maize: molecular evidence and methodological considerations for GMO detection in landrace populations. Mol. Ecol. 18: 750761
[17]Presidential decree 353/08. Available at: http://www.mvotma.gub.uy/dinama/
[18]Riesgo, L, Areal, FJ, Sanvido, O, Rodriguez-Cerezo, E (2010) Statistical analysis of distances needed to limit cross-fertilization between genetically modified and conventional maize in Europe. Nature Biotech. 28: 780782
[19] Sanguinetti, CJ, Dias Neto, E, Simpson, AJG (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17: 915919
[20]Sanou, J, Gouesnard, B, Charrier, A (1997) Isozymes variability in West African maize cultivars (Zea mays L.). Maydica 42: 111
[21]Sanvido, O, Widmer, F, Winzeler, M, Streit, B, Szerencsits, E, Bigler, F (2008) Definition and feasibility of isolation distances for transgenic maize cultivation. Transgenic Res. 17: 317335
[22]Weber, WE, Bringezu, T, Broer, I, Eder, J, Holz, F (2007) Coexistence between GM and non-GM maize crops – Tested in 2004 at the field scale level (Erprobungsanbau 2004). J. Agron. Crop Sci. 193: 7992
[23]Weekes, R, Allnutt, T, Boffey, C, Morgan, S, Bilton, M, Daniels, R, Henry, C (2007) A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Res. 16: 203211
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Environmental Biosafety Research
  • ISSN: 1635-7922
  • EISSN: 1635-7930
  • URL: /core/journals/environmental-biosafety-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed