Skip to main content
×
×
Home

Are the scientific foundations of temperate marine reserves too warm and hard?

  • A.J. CAVEEN (a1), C.J. SWEETING (a1), T.J. WILLIS (a2) and N.V.C. POLUNIN (a1)
Summary

The scientific literature (including some of the most high-profile papers) on the ecological and fisheries effects of permanent no-take marine reserves is dominated by examples from hard tropical and warm temperate ecosystems. It appears to have been tacitly assumed that inference from these studies can directly inform expectations of marine reserve effects in cooler temperate and cold temperate waters. Trends in peer-reviewed studies indicate that the empirical basis for this assumption is tenuous because of a relative lack of research effort in cooler seas, and differences between tropical and temperate regions in ecology, seasonality, the nature of fisheries and prevailing governance regimes.

Copyright
Corresponding author
*Correspondence: Mr Alex Caveen Tel +44 191 222 5607 e-mail a.j.caveen@ncl.ac.uk
References
Hide All
Agardy, T., Bridgewater, P., Crosby, M.P., Day, J., Dayton, P.K., Kenchington, R., Laffoley, D., McConney, P., Murray, P.A., Parks, J.E. & Peau, L. (2003) Dangerous targets? Unresolved issues and ideological clashes around marine protected areas. Aquatic Conservation Marine and Freshwater Ecosystems 13: 353367.
Attwood, C.G. & Bennett, B.A. (1994) Variation in dispersal of Galjoen (Coracinus capensis) (Teleostei, Coracinidae) from a marine reserve. Canadian Journal of Fisheries and Aquatic Sciences 51: 12471257.
Barrett, N. (1995) Short-term and long-term movement patterns of six temperate reef fishes (families Labridae and Monacanthidae). Marine and Freshwater Research 46: 853860.
Blanck, A. & Lamouroux, N. (2007) Large-scale intraspecific variation in life-history traits of European freshwater fish. Journal of Biogeography 34: 862875.
Claudet, J., Osenberg, C.W., Benedetti-Cecchi, L., Domenici, P., Garcia-Charton, J.A., Perez-Ruzafa, A., Badalamenti, F., Bayle-Sempere, J., Brito, A., Bulleri, F., Culioli, J.M., Dimech, M., Falcon, J.M., Guala, I., Milazzo, M., Sanchez-Meca, J., Somerfield, P.J., Stobart, B., Vandeperre, F., Valle, C. & Planes, S. (2008) Marine reserves: size and age do matter. Ecology Letters 11: 481489.
Dinmore, T.A., Duplisea, D.E., Rackham, B.D., Maxwell, D.L. & Jennings, S. (2003) Impact of a large-scale area closure on patterns of fishing disturbance and the consequences for benthic communities. ICES Journal of Marine Science 60: 371380.
Edgar, G. (2011) Does the global network of marine protected areas provide an adequate safety net for marine biodiversity? Aquatic Conservation Marine and Freshwater Ecosystems 21: 313316.
Frank, K.T., Shackell, N.L. & Simon, J.E. (2000) An evaluation of the Emerald/Western Bank juvenile haddock closed area. ICES Journal of Marine Science 57: 10231034.
Franks, J.S. (2000) A review: pelagic fishes at petroleum platforms in the northern Gulf of Mexico; diversity, interrelationships and perspectives. In: Peche Thoniere et Dispositifs de Concentration de Poisons, ed. Gall, J.-Y. Le, Cayre, P. & Taquet, M., pp. 502515. France: Ed. Ifremer, Actes Colloq. 28 [www document]. URL http://horizon.documentation.ird.fr/exl-doc/pleins_textes/divers09–05/010019649.pdf
Freeman, D.J., MacDiarmid, A.B. & Taylor, R.B. (2009) Habitat patches that cross marine reserve boundaries: consequences for the lobster Jasus edwardsii . Marine Ecology Progress Series 388: 159167.
Grossman, G., Jones, G. & Seaman, W. (1997) Do artificial reefs increase regional fish production? A review of existing data. Fisheries 22: 1723.
Guidetti, P. (2002) The importance of experimental design in detecting the effects of protection measures on fish in Mediterranean MPAs. Aquatic Conservation Marine and Freshwater Ecosystems 12: 619634.
Hoskin, M.G., Coleman, R.A., von Carlshausen, E. & Davis, C.M. (2011) Variable population responses by large decapod crustaceans to the establishment of a temperate marine no-take zone. Canadian Journal of Fisheries and Aquatic Sciences 68: 185200.
Hutchings, K. & Griffiths, M.H. (2010) Life-history strategies of Umbrina robinsoni (Sciaenidae) in warm-temperate and subtropical South African marine reserves. African Journal of Marine Science 32: 3753.
Jones, K.M., Fitzgerald, D.G. & Sale, P.F. (2002) Comparative Ecology of Marine Fish Communities. In: Handbook of Fish Biology and Fisheries, ed. Hart, P.J.B. & Reynolds, J.D., p. 345. Oxford, UK: Blackwell Publishing.
Lester, S. E., Halpern, B. S., Grorud-Colvert, K., Lubchenco, J., Ruttenberg, B. I., Gaines, S. D., Airame, S. & Warner, R.R. (2009) Biological effects within no-take marine reserves: a global synthesis. Marine Ecology Progress Series 384: 3346.
Murawski, S.A., Brown, R., Lai, H.L., Rago, P.J. & Hendrickson, L. (2000) Large-scale closed areas as a fishery-management tool in temperate marine systems: the Georges Bank experience. Bulletin of Marine Science 66: 775798.
Rotherham, D., Underwood, A.J., Chapman, M.G. & Gray, C.A. (2007) A strategy for developing scientific sampling tools for fishery-independent surveys of estuarine fish in New South Wales, Australia. ICES Journal of Marine Science 64: 15121516.
Sale, P.F. (2002) The science we need to develop for more effective management. In: Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem, ed. Sale, P.F., pp. 361376. San Diego, CA, USA: Academic Press.
Shipp, R.L. (2003) A perspective on marine reserves as a fishery management tool. Fisheries 28: 1021.
Spalding, M., Wood, L., Fitzgerald, C. & Gjerde, K. (2011) The 10% Target: where do we stand? In: Global Ocean Protection: Present Status and Future Possibilities, ed. Toropova, C., Meliane, I., Laffoley, D., Matthews, E. & Spalding, M., pp. 3031. Brest, France and Gland, Switzerland, Washington, DC and New York, USA: Agence des Aires Marines Protégées and IUCN WCP.
Spalding, M.D., Fox, H.E., Halpern, B.S., McManus, M.A., Molnar, J., Davidson, N., Jorge, Z.A., Lombana, A.L., Lourie, S.A., Martin, K.D., McManus, E., Recchia, C.A. & Robertson, J. (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57: 573583.
Sumpton, W.D. & Jackson, S. (2010) Reproductive biology of snapper (Pagrus auratus) in subtropical areas of its range and management implications of reproductive differences with temperate populations. Asian Fisheries Science 23: 94207.
Sweeting, C.J., Badalamenti, F., D'Anna, G., Pipitone, C. & Polunin, N.V.C. (2009) Steeper biomass spectra of demersal fish communities after trawler exclusion in Sicily. ICES Journal of Marine Science 66: 195202.
Tolimieri, N., Andrews, K., Williams, G., Katz, S. & Levin, P.S. (2009) Home range size and patterns of space use by lingcod, copper rockfish and quillback rockfish in relation to diel and tidal cycles. Marine Ecology Progress Series 380: 229243.
Willis, T.J., Millar, R.B., Babcock, R.C. & Tolimieri, N. (2003 a) Burdens of evidence and the benefits of marine reserves: putting Descartes before des horse? Environmental Conservation 30: 97103.
Willis, T.J., Millar, R.B. & Babcock, R.C. (2003 b) Protection of exploited fish in temperate regions: high density and biomass of snapper Pagrus auratus (Sparidae) in northern New Zealand marine reserves. Journal of Applied Ecology 40: 214227.
Willis, T.J., Parsons, D.M. & Babcock, R.C. (2001) Evidence for long-term site fidelity of snapper (Pagrus auratus) within a marine reserve. New Zealand Journal of Marine and Freshwater Research 35: 581590.
Zeller, D. (1997) Home range and activity patterns of the coral trout Plectropomus leopardus (Serranidae). Marine Ecology Progress Series 154: 6577.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Environmental Conservation
  • ISSN: 0376-8929
  • EISSN: 1469-4387
  • URL: /core/journals/environmental-conservation
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed