Skip to main content Accessibility help
×
Home

Choosing and using multiple traits in functional diversity research

  • JONATHAN S. LEFCHECK (a1), VINICIUS A. G. BASTAZINI (a2) and JOHN N. GRIFFIN (a3)

Summary

Species are different, but they are not equally different. Yet many indices of biodiversity assume species vary to identical degrees. This notion does not meet with intuition: some species vary greatly in terms of their morphology, behaviour and ecology, while others vary only a little. One way to reconcile the dissimilarity between species is by collecting information on their functional traits (FTs), descriptors of how organisms interact with their environment and each other. Functional diversity (FD) is the total variation in one or more FTs across all species within a community, and provides a powerful complement to species diversity. There are several challenges facing the application of FD to conservation science, including lack of rigorous trait data for many organisms, and sparse details on how to select available traits to generate meaningful inferences for the various summary metrics of FD. This Comment provides a brief discussion on choosing and using FTs, and recommendations for best practice. Ultimately, researchers need to consider using a variety of traits when hypotheses are multifaceted or could potentially evolve, at the same time thinking critically about trait selection to avoid redundant information.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Choosing and using multiple traits in functional diversity research
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Choosing and using multiple traits in functional diversity research
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Choosing and using multiple traits in functional diversity research
      Available formats
      ×

Copyright

Corresponding author

*Correspondence: Jonathan S. Lefcheck Tel: +1 804 684 7150 e-mail: jslefche@vims.edu

References

Hide All
Bellwood, D. R., Wainwright, P. C., Fulton, C. J. & Hoey, A. S. (2006) Functional versatility supports coral reef biodiversity. Proceedings of the Royal Society B 273: 101107.
Cornwell, W. K., Schwilk, D. W. & Ackerly, D. D. (2006) A trait-based test for habitat filtering: convex hull volume. Ecology 87: 14651471.
De Bello, F., Lavorel, S., Díaz, S., Harrington, R., Cornelissen, J. H. C., Bardgett, R. D., Berg, M. P., Cipriotti, P., Feld, C. K., Hering, D., Martins da Silva, P., Potts, S. G., Sandin, L., Sousa, J. P., Storkey, J., Wardle, D. A. & Harrison, P. A. (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation 19: 28732893.
De Bello, F., Lavorel, S., Albert, C. H., Thuiller, W., Grigulis, K., Dolezal, J., Janeček, Š. & Lepš, J. (2011) Quantifying the relevance of intraspecific trait variability for functional diversity. Methods in Ecology and Evolution 2: 163174.
Devictor, V., Mouillot, D., Meynard, C., Jiguet, F., Thuiller, W. & Mouquet, N. (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecology Letters 13: 10301040.
Díaz, S., Purvis, A., Cornelissen, J. H. C., Mace, G. M., Donoghue, M. J., Ewers, R. M., Jordano, P. & Pearse, W. D. (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution 3: 29582975.
Eklöf, A., Jacob, U., Kopp, J., Bosch, J., Castro-Urgal, R., Chacoff, N. P., Dalsgaard, B., de Sassi, C., Galetti, M., Guimarães, P. R., Lomáscolo, S. B., Martín González, A. M., Pizo, M. A., Rader, R., Rodrigo, A., Tylianakis, J. M., Vázquez, D. P. & Allesina, S. (2013) The dimensionality of ecological networks. Ecology Letters 16: 577583.
Faith, D. P. (1996) Conservation priorities and phylogenetic pattern. Conservation Biology 10: 12861289.
Griffin, J. N., Jenkins, S. R., Gamfeldt, L., Jones, D., Hawkins, S. J. & Thompson, R. C. (2009) Spatial heterogeneity increases the importance of species richness for an ecosystem process. Oikos 118: 13351342.
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics 43: 227248.
Hodgson, J. G., Wilson, P. J., Hunt, R., Grime, J. P. & Thompson, K. (1999) Allocating CSR plant functional types: a soft approach to a hard problem. Oikos 85: 282294.
Hooper, D. U., Chapin III, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J. & Wardle, D. A. (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 335.
Laliberté, E. & Legendre, P. (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299305.
Laughlin, D. C. (2014) The intrinsic dimensionality of plant traits and its relevance to community assembly. Journal of Ecology 102: 186193.
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178185.
Pakeman, R. J. (2014) Functional trait metrics are sensitive to the completeness of the species’ trait data? Methods in Ecology and Evolution 5: 915.
Petchey, O. L. & Gaston, K. J. (2006) Functional diversity: back to basics and looking forward. Ecology Letters 9: 741758.
Petchey, O. L., Hector, A. & Gaston, K. J. (2004) How do different measures of functional diversity perform? Ecology 85: 847857.
Pillar, V. D. & Sosinski, E. E. Jr (2003) An improved method for searching plant functional types by numerical analysis. Journal of Vegetation Science 14: 323332.
Poos, M. S., Walker, S. C. & Jackson, D. A. (2009) Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90: 341347.
Ricotta, C. & Moretti, M. (2011) CWM and Rao's quadratic diversity: a unified framework for functional ecology. Oecologia 167: 181188.
Rosenfeld, J. S. (2002) Functional redundancy in ecology and conservation. Oikos 98: 156162.
Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. (2010) A user's guide to functional diversity indices. Ecological Monographs 80: 469484.
Spasojevic, M. J. & Suding, K. N. (2012) Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. Journal of Ecology 100: 652661.
Stuart-Smith, R. D., Bates, A. E., Lefcheck, J. S., Duffy, J. E., Baker, S. C., Thomson, R. J., Stuart-Smith, J. F., Hill, N. a., Kininmonth, S. J., Airoldi, L., Becerro, M. A., Campbell, S. J., Dawson, T. P., Navarrete, S. A., Soler, G. A., Strain, E. M. A., Willis, T. J. & Edgar, G. J. (2013) Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501: 539542.
Tucker, C. M. & Cadotte, M. W. (2013) Unifying measures of biodiversity: understanding when richness and phylogenetic diversity should be congruent. Diversity and Distributions 19: 845854.
Villéger, S., Mason, N. W. H. & Mouillot, D. (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 22902301.

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Lefcheck Supplementary Material
Supplementary Material

 Word (12 KB)
12 KB
WORD
Supplementary materials

Lefcheck Supplementary Material
Supplementary Material

 Word (828 KB)
828 KB
UNKNOWN
Supplementary materials

Lefcheck Supplementary Material
Supplementary Material

 Unknown (4 KB)
4 KB
UNKNOWN
Supplementary materials

Lefcheck Supplementary Material
Figure S1

 Unknown (1.6 MB)
1.6 MB

Choosing and using multiple traits in functional diversity research

  • JONATHAN S. LEFCHECK (a1), VINICIUS A. G. BASTAZINI (a2) and JOHN N. GRIFFIN (a3)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.