Skip to main content Accessibility help

Plague, pumas and potential zoonotic exposure in the Greater Yellowstone Ecosystem

  • L Mark Elbroch (a1), T Winston Vickers (a2) and Howard B Quigley (a1)


We tested for plague (Yersinia pestis) in a puma population in the Greater Yellowstone Ecosystem (GYE) over 9 years, overlapping a case when a boy in the area became infected with plague. Antibodies to Y. pestis were detected in 8 of 17 (47%) pumas tested by complement-enzyme-linked immunosorbent assay, and the organism itself was detected in 4 of 11 (36%) pumas tested after necropsy. Neither puma sex nor age was significantly associated with Y. pestis exposure or mortality, although our sample size was small. The overall prevalence of exposure we recorded was similar to that found along the western slope of Colorado, which is adjacent to the Four Corners region, a known plague hotspot in the USA. This suggests that: (1) Y. pestis may be present at higher levels in the GYE than previously assumed; (2) plague is a significant source of mortality for local pumas (6.6% of sub-adult and adult mortality); and (3) pumas may be a useful sentinel for potential risk of plague exposure to humans throughout the West. We would also emphasize that hunters and others handling pumas in this region should be made aware of the possibility of exposure.


Corresponding author

Author for correspondence: Dr Mark Elbroch, Email:


Hide All
Angel, T (2008) Boy Scout contracts plague in Teton area. Jackson Hole News and Guide [www document]. URL
Bevins, SN, Tracey, JA, Franklin, SP, Schmit, VL, MacMillan, ML, Gage, KLet al. (2009) Wild felids as hosts for human plague, Western United States. Emerging Infectious Diseases 15: 20212024.
Biggins, DE, Kosoy, MY (2001) Influences of introduced plague on North American mammals – implications from ecology of plague in Asia. Journal of Mammalogy 82: 906916.
Burnham, KP, Anderson, DR (2002) Model Selection and Multi-model Inference: A Practical Information-theoretic Approach. New York, NY, USA: Springer.
Chu, MC (2000) Laboratory Manual of Plague Diagnostic Tests. Atlanta, GA, USA: Center for Disease Control and Prevention.
Elbroch, LM, Feltner, J, Quigley, H (2017a) Stage-dependent puma predation on dangerous prey. Journal of Zoology 302: 164170.
Elbroch, LM, Levy, M, Lubell, M.Quigley, H, Caragiulo, A (2017b) Adaptive social behaviors in a solitary carnivore. Science Advances 3: e1701218.
Elbroch, LM, Lowrey, B, Wittmer, H (2018a) The importance of fieldwork over predictive modeling in quantifying predation events of carnivores marked with GPS technology. Journal of Mammalogy 99: 223232.
Elbroch, LM, Marescot, L, Quigley, H, Craighead, D, Wittmer, HU (2018b) Multiple anthropogenic interventions drive puma survival following wolf recovery in the Greater Yellowstone Ecosystem. Ecology and Evolution 8: 72367245.
Elbroch, LM, Quigley, H (2016) Social interactions in a solitary carnivore. Current Zoology 63: 357362.
Elbroch, LM, Quigley, H (2019) Age-specific foraging strategies among pumas, and its implications for aiding ungulate populations through carnivore control. Conservation Science and Practice 1: e23.
Gage, KL, Dennis, DT, Orloski, KA, Ettestad, P, Brown, TL, Reynolds, PJet al. (2000) Cases of cat-associated human plague in the Western US, 1977–1998. Clinical Infectious Diseases 30: 893900.
Gage, KL, Kosoy, MY (2005) Natural history of plague: perspectives from more than a century of research. Annual Review of Entomology 50: 505528.
Heffelfinger, J (2010) Age Criteria for Southwestern Game Animals – Special Report #19. Phoenix, AZ, USA: Arizona Game and Fish Department.
Laundré, JW, Hernández, L, Streubel, D, Altendorf, K, González, CL (2000) Aging mountain lions using gum-line recession. Wildlife Society Bulletin 28: 963966.
Malek, MA, Bitam, I, Levasseur, A, Terras, J, Gaudart, J, Azza, Set al. (2017) Yersinia pestis halotolerance illuminates plague reservoirs. Scientific Reports 7: 40022.
Salkeld, DJ, Stapp, P (2006) Seroprevalence rates and transmission of plague (Yersinia pestis) in mammalian carnivores. Vector-Borne Zoonotic Diseases 6: 231239.
Walsh, M, Haseeb, MA (2015) Modeling the ecologic niche of plague in sylvan and domestic animal hosts to delineate sources of human exposure in the western United States. PeerJ 3: e1493.
Williams, JE, Arntzen, L, Robinson, DM, Cavanaugh, DC, Isaacson, M (1982) Comparison of passive haemagglutination and enzyme-linked immunosorbent assay for serodiagnosis of plague. Bulletin of the World Health Organization 60: 777781
Wong, D, Wild, MA, Walburger, MA, Higgins, CL, Callahan, J, Czarnecki, LAet al. (2009) Primary pneumonic plague contracted from a mountain lion carcass. Clinical Infectious Diseases 49: e33e38.


Plague, pumas and potential zoonotic exposure in the Greater Yellowstone Ecosystem

  • L Mark Elbroch (a1), T Winston Vickers (a2) and Howard B Quigley (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.