Skip to main content Accessibility help
×
Home

Potential risks of trophic impacts by escaped transgenic salmon in marine environments

  • LINGBO LI (a1) (a2), TONY J. PITCHER (a2) and ROBERT H. DEVLIN (a1)

Summary

There is significant concern about potential ecological effects of introduced organisms, including non-indigenous species and those created by genetic modification. This paper presents an Ecopath with Ecosim modelling approach, designed to examine long-term trophic effects of growth hormone (GH) transgenic coho salmon should they ever escape to a coastal salmonid ecosystem, namely the Strait of Georgia in British Columbia (Canada). The model showed that the effects of introduced GH transgenic coho salmon varied with their biomass, diet, structure of the invaded ecosystem, and environmental conditions. Occasional escapes of non-reproductive salmon did not have a significant impact on the example ecosystem. However, effects of GH coho salmon varied with their diet when large numbers of these fish were present in the simulated ecosystem (for example, when they constituted 20% of total current aquaculture production in the area). Further, climate-driven changes in the biomass of low trophic levels (bottom-up effects) could have a greater impact on the ecosystem than the introduction of large numbers of GH coho salmon. A new version of Ecopath with Ecosim's Monte Carlo approach showed that the model predictions were robust to GH coho salmon's Ecopath parameters, but more sensitive to vulnerabilities of prey to GH coho salmon. Modelling ecosystem effects of genetically modified organisms provides a complementary approach for risk assessments when data from nature are not readily obtainable.

Copyright

Corresponding author

*Correspondence: Dr Robert H. Devlin Tel: +1 604 666 7926 Fax: +1 604 666 3497 e-mail: robert.devlin@dfo-mpo.gc.ca

References

Hide All
Ahrens, R. N. M. & Devlin, R. H. (2011) Standing genetic variation and compensatory evolution in transgenic organisms: a growth-enhanced salmon simulation. Transgenic Research 20: 583597.
Ahrens, R. N. M., Walters, C. J. & Christensen, V. (2012) Foraging arena theory. Fish and Fisheries 13: 4159.
Ainsworth, C. H., Kaplan, I. C., Levin, P. S. & Mangel, M. (2010) A statistical approach for estimating fish diet compositions from multiple data sources: Gulf of California case study. Ecological Applications 20: 21882202.
Bax, N., Williamson, A., Aguero, M., Gonzalez, E. & Geeves, W. (2003) Marine invasive alien species: a threat to global biodiversity. Marine Policy 27: 313323.
Bessey, C., Devlin, R. H., Liley, N. R. & Biagi, C. A. (2004) Reproductive performance of growth-enhanced transgenic coho salmon. Transactions of the American Fisheries Society 133: 12051220.
Cheung, W. W. L., Lam, V. W. Y., Sarmiento, J. L., Kearney, K., Watson, R. & Pauly, D. (2009) Projecting global marine biodiversity impacts under climate change scenarios. Fish and Fisheries 10: 235251.
Christensen, V. & Walters, C. J. (2004) Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172: 109139.
Christensen, V., Walters, C. J., Pauly, D. & Forrest, R. (2008) Ecopath with Ecosim version 6 user guide [www document]. URL http://www.ecopath.org
Coumou, D. & Rahmstorf, S. (2012) A decade of weather extremes. Nature Climate Change 2: 491496.
Davis, S. A., Catchpole, E. A. & Pech, R. P. (1999) Models for the introgression of a transgene into a wild population within a stochastic environment, with applications to pest control. Ecological Modelling 119: 267275.
Devlin, R. H. & Donaldson, E. M. (1992) Containment of genetically altered fish with emphasis on salmonids. In: Transgenic Fish, ed. Hew, C. L. & Fletcher, G. L., pp. 229–66. Singapore: World Scientific.
Devlin, R. H., Biagi, C. A. & Yesaki, T. Y. (2004a) Growth, viability and genetic characteristics of GH transgenic coho salmon strains. Aquaculture 236: 607632.
Devlin, R. H., D’Andrade, M., Uh, M. & Biagi, C. A. (2004 b) Population effects of growth hormone transgenic coho salmon depend on food availability and genotype by environment interactions. Proceedings of the National Academy of Sciences USA 101: 93039308.
Devlin, R. H., Johnsson, J. I., Smailus, D. E., Biagi, C. A., Joensson, E. & Bjoernsson, B. T. (1999) Increased ability to compete for food by growth hormone-transgenic coho salmon Oncorhynchus kisutch (Walbaum). Aquaculture Research 30: 479482.
Devlin, R. H., Sundström, L. F. & Muir, W. M. (2006) Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends in Biotechnology 24: 8997.
Devlin, R. H., Yesaki, T. Y., Biagl, C. A., Donaldson, E. M., Swanson, P. & Chan, W. (1994) Extraordinary salmon growth. Nature 371: 209210.
Espinosa-Romero, M. J., Gregr, E. J., Walters, C., Christensen, V. & Chan, K. (2011) Representing mediating effects and species reintroductions in Ecopath with Ecosim. Ecological Modelling 222: 15691579.
Falk-Petersen, J., Renaud, P. & Anisimova, N. (2011) Establishment and ecosystem effects of the alien invasive red king crab (Paralithodes camtschaticus) in the Barents Sea: a review. ICES Journal of Marine Science: Journal du Conseil 68: 479488.
Farrell, A. P., Bennett, W. & Devlin, R. H. (1997) Growth-enhanced transgenic salmon can be inferior swimmers. Canadian Journal of Zoology 75: 335337.
Grosholz, E. D., Ruiz, G. M., Dean, C. A., Shirley, K. A., Maron, J. L. & Connors, P. G. (2000) The impacts of a nonindigenous marine predator in a California Bay. Ecology 81: 12061224.
Harvey, C. J. & Kareiva, P. M. (2005) Community context and the influence of non-indigenous species on juvenile salmon survival in a Columbia River reservoir. Biological Invasions 7: 651663.
Hoover, C., Pitcher, T. & Christensen, V. (2013) Effects of hunting, fishing and climate change on the Hudson Bay marine ecosystem: I. Re-creating past changes 1970–2009. Ecological Modelling 264: 130142.
Hutchings, J. A. & Fraser, D. J. (2008) The nature of fisheries- and farming-induced evolution. Molecular Ecology 17: 294313.
Jensen, Ø., Dempster, T., Thorstad, E. B., Uglem, I. & Fredheim, A. (2010) Escapes of fishes from Norwegian sea-cage aquaculture: causes, consequences and prevention. Aquatic Environmental Interactions 1: 7183.
Kaplan, I. C., Brown, C. J., Fulton, E. A., Gray, I. A., Field, J. C. & and Smith, A. D. M. (2013) Impacts of depleting forage species in the California Current. Environmental Conservation 40: 380393.
Kolar, C. S. & Lodge, D. M. (2002) Ecological predictions and risk assessment for alien fishes in North America. Science 298: 12331236.
Langseth, B. J., Rogers, M. & Zhang, H. (2012) Modeling species invasions in Ecopath with Ecosim: An evaluation using Laurentian Great Lakes models. Ecological Modelling 247: 251261.
Lee, C. G., Devlin, R. H. & Farrell, A. P. (2003) Swimming performance, oxygen consumption and excess post-exercise oxygen consumption in adult transgenic and ocean-ranched coho salmon. Journal of Fish Biology 62: 753766.
Li, L., Ainsworth, C. & Pitcher, T. (2010) Presence of harbour seals (Phoca vitulina) may increase exploitable fish biomass in the Strait of Georgia. Progress in Oceanography 87: 235241.
Liu, Y., Diserud, O. H., Hindar, K. & Skonhoft, A. (2013) An ecological–economic model on the effects of interactions between escaped farmed and wild salmon (Salmo salar). Fish and Fisheries 14: 148173.
Li, L., Mackas, D., Hunt, B., Schweigert, J., Pakhomov, E., Ian Perry, R., Galbraith, M. & Pitcher, T. J. (2013) Zooplankton communities in the Strait of Georgia, British Columbia, track large-scale climate forcing over the Pacific Ocean. Progress in Oceanography 115: 90102.
Lõhmus, M., Björklund, M., Sundström, L. F. & Devlin, R. H. (2010) Effects of temperature and growth hormone on individual growth trajectories of wild-type and transgenic coho salmon Oncorhynchus kisutch . Journal of Fish Biology 76: 641654.
Mackas, D., Galbraith, M., Faust, D., Masson, D., Young, K., Shaw, W., Romaine, S., Trudel, M., Dower, J. & Campbell, R. (2013) Zooplankton time series from the Strait of Georgia: Results from year-round sampling at deep water locations, 1990–2010. Progress in Oceanography 115: 129159.
Muir, W. M. & Howard, R. D. (1999) Possible ecological risks of transgenic organism release when transgenes affect mating success: Sexual selection and the Trojan gene hypothesis. Proceedings of the National Academy of Sciences USA 96: 1385313856.
Muir, W. M. & Howard, R. D. (2002) Assessment of possible ecological risks and hazards of transgenic fish with implications for other sexually reproducing organisms. Transgenic Research 11: 101114.
Parker, I. M., Simberloff, D., Lonsdale, W. M., Goodell, K., Wonham, M., Kareiva, P. M., Williamson, M. H., Von Holle, B. M. P. B., Moyle, P. B. & Byers, J. E. (1999) Impact: toward a framework for understanding the ecological effects of invaders. Biological Invasions 1: 319.
Perry, R. I., Barange, M., Hofmann, E., Moloney, C., Ottersen, G. & Sakurai, Y. (2010) Introduction to the GLOBEC 3rd Open Science Meeting: From ecosystem function to ecosystem prediction. Progress in Oceanography 87: 15.
Pitcher, T. J. & Hart, P. J. B. (1995) The Impact of Species Changes in African Lakes. London, UK: Chapman & Hall.
Rahmstorf, S. & Coumou, D. (2011) Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences USA 108: 1790517909.
Ricciardi, A. (2003) Predicting the impacts of an introduced species from its invasion history: an empirical approach applied to zebra mussel invasions. Freshwater Biology 48: 972981.
Ruesink, J. L. (2005) Global analysis of factors affecting the outcome of freshwater fish introductions. Conservation Biology 19: 18831893.
Smith, A. D. M., Brown, C. J., Bulman, C. M., Fulton, E. A., Johnson, P., Kaplan, I. C., Lozano-Montes, H., Mackinson, S., Marzloff, M., Shannon, L. J., Shin, Y. & Jorge Tam, J. (2011) Impacts of fishing low–trophic level species on marine ecosystems. Science 333: 11471150.
Sundström, L. F., Lohmus, M., Devlin, R. H., Johnsson, J. I., Biagi, C. A. & Bohlin, T. (2004) Feeding on profitable and unprofitable prey: comparing behaviour of growth-enhanced transgenic and normal coho Salmon (Oncorhynchus kisutch). Ethology 110: 381396.
Sundström, L. F., Lohmus, M. & Devlin, R. H. (2005) Selection on increased intrinsic growth rates in coho salmon, Oncorhynchus kisutch . Evolution 59: 15601569.
Sundström, L. F., Lohmus, M., Tymchuk, W. E. & Devlin, R. H. (2007) Gene-environment interactions influence ecological consequences of transgenic animals. Proceedings of the National Academy of Sciences USA 104: 38893894.
Thomsen, M. S., Olden, J. D., Wernberg, T., Griffin, J. N. & Silliman, B. R. (2011) A broad framework to organize and compare ecological invasion impacts. Environmental Research 111: 899908.
Valosaari, K. R., Aikio, S. & Kaitala, V. (2008) Male mating strategy and the introgression of a growth hormone transgene. Evolutionary Applications 1: 608619.
Walters, C. & Kitchell, J. F. (2001) Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Canadian Journal of Fisheries and.Aquatic.Science 58: 3950.
Walther, G. R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., Zobel, M., Bacher, S., Botta-Dukát, Z. & Bugmann, H. (2009) Alien species in a warmer world: risks and opportunities. Trends in Ecology and Evolution 24: 686693.
Zhu, Z., He, L. & Chen, S. (1985) Novel gene transfer into the fertilized eggs of gold fish (Carassius auratus L. 1758). Journal of Applied Ichthyology 1: 3134.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Li Supplementary Material
Supplementary Material

 Word (31 KB)
31 KB

Potential risks of trophic impacts by escaped transgenic salmon in marine environments

  • LINGBO LI (a1) (a2), TONY J. PITCHER (a2) and ROBERT H. DEVLIN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.