Hostname: page-component-cc8bf7c57-fxdwj Total loading time: 0 Render date: 2024-12-11T23:51:32.741Z Has data issue: false hasContentIssue false

Vulnerability of megapodes (Megapodiidae, Aves) to climate change and related threats

Published online by Cambridge University Press:  23 April 2018

PAUL M. RADLEY*
Affiliation:
School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
ROBERT A. DAVIS
Affiliation:
School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
RENÉ W.R.J. DEKKER
Affiliation:
Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
SHAUN W. MOLLOY
Affiliation:
School of Science, Edith Cowan University, Southwest Campus, 585 Robertson Drive, College Grove, WA, 6230, Australia
DAVID BLAKE
Affiliation:
School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA, 6027, Australia
ROBERT HEINSOHN
Affiliation:
Fenner School of Environment and Society, College of Medicine, Biology and Environment, Australia National University, Building 141, Linnaeus Way, Canberra, ACT, 2601, Australia
*
*Correspondence: Paul M. Radley email: pratincola@hotmail.com

Summary

Aspects of species life histories may increase their susceptibility to climate change. Owing to their exclusive reliance on environmental sources of heat for incubation, megapodes may be especially vulnerable. We employed a trait-based vulnerability assessment to weigh their exposure to projected climate variables of increasing temperatures, fluctuating rainfall and sea level rise and their biological sensitivity and capacity to adapt. While all 21 species were predicted to experience at least a 2 °C increase in mean annual temperature, 12 to experience a moderate or greater fluctuation in rainfall and 16 to experience rising seas, the most vulnerable megapodes are intrinsically rare and range restricted. Species that employ microbial decomposition for incubation may have an adaptive advantage over those that do not and may be more resilient to climate change. The moderate microclimate necessary for mound incubation, however, may in some areas be threatened by anthropogenic habitat loss exacerbated by warmer and seasonally drier conditions. As with many avian species, little is known about the capacity of megapodes to adapt to a changing climate. We therefore recommend that future research efforts investigate megapode fecundity, gene flow and genetic connectivity at the population level to better determine their adaptive capacity.

Type
Papers
Copyright
Copyright © Foundation for Environmental Conservation 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baek, H. J., Lee, J., Lee, H. S., Hyun, Y. K., Cho, C., Kwon, W. T., Marzin, C., et al. (2013) Climate change in the 21st century simulated by HadGEM2-AO under representative concentration pathways. Asia-Pacific Journal of Atmospheric Sciences 49 (5): 603618.Google Scholar
Barve, N., Bonilla, A. J., Brandes, J., Brown, J. C., Brunsell, N., Cochran, F. V., Crosthwait, R. J., et al. (2012) Climate-change and mass mortality events in overwintering monarch butterflies. Revista Mexicana De Biodiversidad 83 (3): 817824.Google Scholar
Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. (2012) Impacts of climate change on the future of biodiversity. Ecology Letters 15 (4): 365377.Google Scholar
Bi, D., Dix, M., Marsland, S. J., O'Farrell, S., Rashid, H. A., Uotila, P., Hirst, A. C., et al. (2013) The ACCESS coupled model: description, control climate and evaluation. Australian Meteorological and Oceanographic Journal 63 (1): 4164.Google Scholar
Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. (2014) Bioclim: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Diversity and Distributions 20 (1): 19.Google Scholar
Brodie, J., Post, E. & Laurance, W. F. (2012) Climate change and tropical biodiversity: a new focus. Trends in Ecology & Evolution 27 (3): 145150.Google Scholar
Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. (2008) Synergies among extinction drivers under global change. Trends in Ecology & Evolution 23 (8): 453460.Google Scholar
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., et al. (2013) Sea level change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, P. M., pp. 11371216. Cambridge, UK and New York, NY, USA: Cambridge University Press.Google Scholar
Cochrane, M. A. (2003) Fire science for rainforests. Nature 421 (6926): 913919.Google Scholar
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., et al. (2013) Long-term climate change: projections, commitments, and irreversibility. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. & Midgley, G. F., pp. 10291136. Cambridge, UK and New York, NY, USA: Cambridge University Press.Google Scholar
CSIRO and Bureau of Meteorology (2015) Climate Change in Australia: Information for Australia's Natural Resource Management Regions. Technical Report. Canberra, Australia: CSIRO and BOM.Google Scholar
Dawson, T. P., House, J. I., Prentice, I. C. & Mace, G. M. (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332 (6030): 664664.Google Scholar
Dekker, R. W. R. J., Fuller, R. A. & Baker, G. C. (2000) Megapodes: Status Survey and Action Plan 2000–2004. WPA/BirdLife/SSC Megapode Specialist Group. Gland, Switzerland and Reading, UK: IUCN and the World Pheasant Association.Google Scholar
Diffenbaugh, N. S. & Giorgi, F. (2012) Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114 (3–4): 813822.Google Scholar
Eiby, Y. & Booth, D. (2008) Embryonic thermal tolerance and temperature variation in mounds of the Australian brush-turkey (Alectura lathami). Auk 125 (3): 594599.Google Scholar
ESRI (2015) ArcGIS Desktop. Release 10.4. Redlands, CA, USA: Environmental Systems Research Institute.Google Scholar
Foden, W. & Young, B. E. (2016) IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change. Cambridge, UK and Gland, Switzerland: IUCN Species Survival Commission.Google Scholar
Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vie, J.-C., Akcakaya, H. R., Angulo, A., DeVantler, L. M., et al. (2013) Identifying the world's most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8: e65427.Google Scholar
Fordham, D. A. & Brook, B. W. (2010) Why tropical island endemics are acutely susceptible to global change. Biodiversity and Conservation 19 (2): 329342.Google Scholar
Gardali, T., Seavy, N. E., DiGaudio, R. T. & Comrack, L. A. (2012) A climate change vulnerability assessment of California's at-risk birds. PLoS ONE 7 (3): e29507.Google Scholar
Harris, R. B., Birks, S. M. & Leaché, A. D. (2014) Incubator birds: biogeographical origins and evolution of underground nesting in megapodes (Galliformes: Megapodiidae). Journal of Biogeography 41 (11): 20452056.Google Scholar
Harter, D. E. V., Irl, S. D. H., Seo, B., Steinbauer, M. J., Gillespie, R., Triantis, K. A., Fernández-Palacios, J. M., et al. (2015) Impacts of global climate change on the floras of oceanic islands – projections, implications and current knowledge. Perspectives in Plant Ecology, Evolution and Systematics 17 (2): 160183.Google Scholar
Hughes, A. C. (2017) Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8: e01624.Google Scholar
Imansyah, M. J., Jessop, T. S., Sumner, J., Purwandana, D., Ariefiandy, A. & Seno, A. (2009) Distribution, seasonal use, and predation of incubation mounds of orange-footed scrubfowl on Komodo Island, Indonesia. Journal of Field Ornithology 80 (2): 119126.Google Scholar
IPCC (2007) Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E. (eds). Cambridge, UK: Cambridge University Press.Google Scholar
IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds. Core Writing Team, Pachauri, R. K. & Mayer, L. A.. Geneva, Switzerland: IPCC.Google Scholar
IUCN (2016) The IUCN Red List of Threatened Species. Version 2016.3 [www document]. URL www.iucnredlist.orgGoogle Scholar
Jetz, W., Wilcove, D. S. & Dobson, A. P. (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology 5 (6): e157.Google Scholar
Jiguet, F., Gadot, A. S., Julliard, R., Newson, S. E. & Couvet, D. (2007) Climate envelope, life history traits and the resilience of birds facing global change. Global Change Biology 13 (8): 16721684.Google Scholar
Jones, D. N. (1999) What we don't know about megapodes. Zoologische Verhandelingen 327: 159168.Google Scholar
Jones, D. N., Dekker, R. W. R. J. & Roselaar, C. S. (1995) The Megapodes. Oxford, UK: Oxford University Press.Google Scholar
Keppel, G., Morrison, C., Watling, D., Tuiwawa, M. V. & Rounds, I. A. (2012) Conservation in tropical Pacific Island countries: why most current approaches are failing. Conservation Letters 5 (4): 256265.Google Scholar
Kingsford, R. T. & Watson, J. E. M. (2011) Climate change in Oceania – a synthesis of biodiversity impacts and adaptations. Pacific Conservation Biology 17 (3): 270284.Google Scholar
Lovejoy, T. (2008) Climate change and biodiversity. OIE Revue Scientifique et Technique 27 (2): 331338.Google Scholar
O'Brien, M., Beaumont, D. J., Peacock, M. A., Hills, R. & Edwin, H. (2003) The Vanuatu Megapode Megapodius layardi Monitoring and Conservation. Sandy, UK: RSPB.Google Scholar
Saracco, J. F., Radley, P., Pyle, P., Rowan, E., Taylor, R. & Helton, L. (2016) Linking vital rates of landbirds on a tropical island to rainfall and vegetation greenness. PLoS ONE 11 (2): e0148570.Google Scholar
Sekercioglu, C. H., Primack, R. B. & Wormworth, J. (2012) The effects of climate change on tropical birds. Biological Conservation 148 (1): 118.Google Scholar
Simberloff, D. (2000) Extinction-proneness of island species – causes and management implications. Raffles Bulletin of Zoology 48 (1): 19.Google Scholar
Sinclair, J. R. (2001) Temperature regulation in mounds of three sympatric species of megapode (Aves: Megapodiidae) in Papua New Guinea: testing the ‘Seymour model’. Australian Journal of Zoology 49 (6): 675694.Google Scholar
Sinclair, J. R. (2002) Selection of incubation mound sites by three sympatric megapodes in Papua New Guinea. Condor 104 (2): 395406.Google Scholar
Sinclair, J. R., O'Brien, T. G. & Kinnaird, M. F. (2002) The selection of incubation sites by the Philippine Megapode, Megapodius cumingii, in North Sulawesi, Indonesia. Emu 102 (2): 151158.Google Scholar
Sivakumar, K. & Sankaran, R. (2012) Habitat preference of the Nicobar megapode Megapodius nicobariensis in the Great Nicobar Island, India. In: Eology of the Faunal Communities on the Andaman and Nicobar Islands, eds. Venkataraman, K., Raghunathan, C. & Sivaperuman, C., Berlin Heidelberg, Germany: Springer-Verlag.Google Scholar
Sodhi, N. S., Koh, L. P., Clements, R., Wanger, T. C., Hill, J. K., Hamer, K. C., Clough, Y., et al. (2010) Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biological Conservation 143 (10): 23752384.Google Scholar
Taylor, S. & Kumar, L. (2016) Global climate change impacts on Pacific Islands terrestrial biodiversity: a review. Tropical Conservation Science 9 (1): 203223.Google Scholar
Tingley, M. W., Koo, M. S., Moritz, C., Rush, A. C. & Beissinger, S. R. (2012) The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology 18 (11): 32793290.Google Scholar
Trenberth, K. E. (2011) Changes in precipitation with climate change. Climate Research 47 (1–2): 123138.Google Scholar
Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T., Okajima, H., Nozawa, T., et al. (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development 4 (4): 845872.Google Scholar
Wetzel, F. T., Beissmann, H., Penn, D. J. & Jetz, A. (2013) Vulnerability of terrestrial island vertebrates to projected sea-level rise. Global Change Biology 19 (7): 20582070.Google Scholar
Widlansky, M. J., Timmermann, A., Stein, K., McGregor, S., Schneider, N., England, M. H., Lengaigne, M., et al. (2013) Changes in South Pacific rainfall bands in a warming climate. Nature Climate Change 3 (4): 417423.Google Scholar
Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. (2008) Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6 (12): 26212626.Google Scholar