Skip to main content Accessibility help
×
Home

Acinetobacter calcoaceticusAcinetobacter baumannii complex species in clinical specimens in Singapore

  • T. H. KOH (a1) (a2), T. T. TAN (a3), C. T. KHOO (a3), S. Y. NG (a4), T. Y. TAN (a4), L-Y. HSU (a2), E. E. OOI (a5), T. J. K. VAN DER REIJDEN (a6) and L. DIJKSHOORN (a6)...

Summary

This study was performed to determine the prevalence, distribution of specimen sources, and antimicrobial susceptibility of the Acinetobacter calcoaceticus–Acinetobacter baumannii (Acb) species complex in Singapore. One hundred and ninety-three non-replicate Acb species complex clinical isolates were collected from six hospitals over a 1-month period in 2006. Of these, 152 (78·7%) were identified as A. baumannii, 18 (9·3%) as ‘Acinetobacter pittii’ [genomic species (gen. sp.) 3], and 23 (11·9%) as ‘Acinetobacter nosocomialis’ (gen. sp. 13TU). Carbapenem resistance was highest in A. baumannii (72·4%), followed by A. pittii (38·9%), and A. nosocomialis (34·8%). Most carbapenem-resistant A. baumannii and A. nosocomialis possessed the blaOXA-23-like gene whereas carbapenem-resistant A. pittii possessed the blaOXA-58-like gene. Two imipenem-resistant strains (A. baumannii and A. pittii) had the blaIMP-like gene. Representatives of carbapenem-resistant A. baumannii were related to European clones I and II.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Acinetobacter calcoaceticusAcinetobacter baumannii complex species in clinical specimens in Singapore
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Acinetobacter calcoaceticusAcinetobacter baumannii complex species in clinical specimens in Singapore
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Acinetobacter calcoaceticusAcinetobacter baumannii complex species in clinical specimens in Singapore
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr T. H. Koh, Department of Pathology, Singapore General Hospital, Outram Road, 169608, Singapore. (Email: koh.tse.hsien@sgh.com.sg)

References

Hide All
1.Nemec, A, et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus- Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Research in Microbiology 2011; 162: 393404.
2.Chen, TL, et al. Comparison of one-tube multiplex PCR, automated ribotyping and intergenic spacer (ITS) sequencing for rapid identification of Acinetobacter baumannii. Clinical Microbiology and Infection 2007; 3: 801806.
3.Chang, HC, et al. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. Journal of Clinical Microbiology 2005; 43: 632639.
4.van, den Broek PJ, et al. Endemic and epidemic Acinetobacter species in a university hospital: an 8-year survey. Journal of Clinical Microbiology 2009; 47: 35933599.
5.Koh, TH, et al. IMP-4 and OXA β-lactamases in Acinetobacter baumannii from Singapore. Journal of Antimicrobial Chemotherapy 2007; 59: 627632.
6.Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; twentieth informational supplement. Document M100-S20. Wayne, PA: CLSI, 2010.
7.Higgins, PG, Lehmann, M, Seifert, H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. International Journal of Antimicrobial Agents 2010; 35: 305.
8.Poirel, L, Nordmann, P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-58 in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy 2006; 50: 14421448.
9.Corvec, S, et al. Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene bla OXA-23 in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy 2007; 51: 15301533.
10.Ellington, MJ, et al. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. Journal of Antimicrobial Chemotherapy 2007; 59: 321322.
11.Lee, YT, et al. Differences in phenotypic and genotypic characteristics among imipenem-non-susceptible Acinetobacter isolates belonging to different genomic species in Taiwan. International Journal of Antimicrobial Agents 2009; 34: 580584.
12.Turton, JF, et al. Identification of Acinetobacter baumannii by detection of the bla OXA-51-like carbapenemase gene intrinsic to this species. Journal of Clinical Microbiology 2006; 44: 29742976.
13.Lee, YT, et al. First identification of bla OXA-51-like in non-baumannii Acinetobacter spp. Journal of Chemotherapy 2009; 21: 514520.
14.Mugnier, PD, et al. Worldwide dissemination of the bla OXA-23 carbapenemase gene of Acinetobacter baumannii. Emerging Infectious Diseases 2010; 16: 3540.
15.Di Popolo, A, et al. Molecular epidemiological investigation of multidrug-resistant Acinetobacter baumannii strains in four Mediterranean countries with a multilocus sequence typing scheme. Clinical Microbiology and Infection 2011; 17: 197201.
16.Boo, TW, et al. Molecular characterization of carbapenem-resistant Acinetobacter species in an Irish university hospital: predominance of Acinetobacter genomic species 3. Journal of Medical Microbiology 2009; 58: 209216.
17.Nemec, A, et al. Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. Journal of Antimicrobial Chemotherapy 2008; 62: 484489.
18.Fu, Y, et al. Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. Journal of Antimicrobial Chemotherapy 2010; 65: 644650.
19.Park, YK, et al. A single clone of Acinetobacter baumannii, ST22, is responsible for high antimicrobial resistance rates of Acinetobacter spp. isolates that cause bacteremia and urinary tract infections in Korea. Microbial Drug Resistance 2010; 16: 143149.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed