Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 43
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Fatima, Syeda Hira Atif, Salman Rasheed, Syed Basit Zaidi, Farrah and Hussain, Ejaz 2016. Species Distribution Modelling ofAedes aegyptiin two dengue-endemic regions of Pakistan. Tropical Medicine & International Health, Vol. 21, Issue. 3, p. 427.

    Jia, Pengfei Lu, Liang Chen, Xiang Chen, Jin Guo, Li Yu, Xiao and Liu, Qiyong 2016. A climate-driven mechanistic population model of Aedes albopictus with diapause. Parasites & Vectors, Vol. 9, Issue. 1,

    Karam, Hugo Abi Silva, Julio Cesar Barreto da Filho, Augusto José Pereira and Rojas, José Luis Flores 2016. Dynamic Modelling of Dengue Epidemics in Function of Available Enthalpy and Rainfall. Open Journal of Epidemiology, Vol. 06, Issue. 01, p. 50.

    Lessler, J. Chaisson, L. H. Kucirka, L. M. Bi, Q. Grantz, K. Salje, H. Carcelen, A. C. Ott, C. T. Sheffield, J. S. Ferguson, N. M. Cummings, D. A. T. Metcalf, C. J. E. and Rodriguez-Barraquer, I. 2016. Assessing the global threat from Zika virus. Science, Vol. 353, Issue. 6300, p. aaf8160.

    Maneerat, Somsakun and Daudé, Eric 2016. A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas. Ecological Modelling, Vol. 333, p. 66.

    Ndii, Meksianis Z. Allingham, David Hickson, R.I. and Glass, Kathryn 2016. The effect of Wolbachia on dengue outbreaks when dengue is repeatedly introduced. Theoretical Population Biology, Vol. 111, p. 9.

    Okuneye, Kamaldeen and Gumel, Abba B. 2016. Analysis of a temperature- and rainfall-dependent model for malaria transmission dynamics. Mathematical Biosciences,

    Peña-García, Víctor Triana-Chávez, Omar Mejía-Jaramillo, Ana Díaz, Francisco Gómez-Palacio, Andrés and Arboleda-Sánchez, Sair 2016. Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities. International Journal of Environmental Research and Public Health, Vol. 13, Issue. 7, p. 734.

    Polwiang, Sittisede 2016. Estimation of dengue infection for travelers in Thailand. Travel Medicine and Infectious Disease, Vol. 14, Issue. 4, p. 398.

    Sardar, Tridip Sasmal, Sourav Kumar and Chattopadhyay, Joydev 2016. Estimating dengue type reproduction numbers for two provinces of Sri Lanka during the period 2013–14. Virulence, Vol. 7, Issue. 2, p. 187.

    WEARING, HELEN J. ROBERT, MICHAEL A. and CHRISTOFFERSON, REBECCA C. 2016. Dengue and chikungunya: modelling the expansion of mosquito-borne viruses into naïve populations. Parasitology, Vol. 143, Issue. 07, p. 860.

    Zhang, Hong Georgescu, Paul and Hassan, Adamu Shitu 2016. Mathematical insights and integrated strategies for the control of Aedes aegypti mosquito. Applied Mathematics and Computation, Vol. 273, p. 1059.

    Dias, Weverton O. Wanner, Elizabeth F. and Cardoso, Rodrigo T.N. 2015. A multiobjective optimization approach for combating Aedes aegypti using chemical and biological alternated step-size control. Mathematical Biosciences, Vol. 269, p. 37.

    Hu, Linchao Huang, Mugen Tang, Moxun Yu, Jianshe and Zheng, Bo 2015. Wolbachia spread dynamics in stochastic environments. Theoretical Population Biology, Vol. 106, p. 32.

    Hur, Byul and Eisenstadt, William R. 2015. SoutheastCon 2015. p. 1.

    Khalid, Bushra and Ghaffar, Abdul 2015. Environmental risk factors and hotspot analysis of dengue distribution in Pakistan. International Journal of Biometeorology, Vol. 59, Issue. 11, p. 1721.

    LIAO, C.-M. HUANG, T.-L. CHENG, Y.-H. CHEN, W.-Y. HSIEH, N.-H. CHEN, S.-C. and CHIO, C.-P. 2015. Assessing dengue infection risk in the southern region of Taiwan: implications for control. Epidemiology and Infection, Vol. 143, Issue. 05, p. 1059.

    Ndii, Meksianis Z. Hickson, R.I. Allingham, David and Mercer, G.N. 2015. Modelling the transmission dynamics of dengue in the presence of Wolbachia. Mathematical Biosciences, Vol. 262, p. 157.

    Parham, P. E. Waldock, J. Christophides, G. K. Hemming, D. Agusto, F. Evans, K. J. Fefferman, N. Gaff, H. Gumel, A. LaDeau, S. Lenhart, S. Mickens, R. E. Naumova, E. N. Ostfeld, R. S. Ready, P. D. Thomas, M. B. Velasco-Hernandez, J. and Michael, E. 2015. Climate, environmental and socio-economic change: weighing up the balance in vector-borne disease transmission. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 370, Issue. 1665, p. 20130551.

    Polwiang, Sittisede 2015. The seasonal reproduction number of dengue fever: impacts of climate on transmission. PeerJ, Vol. 3, p. e1069.


Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue

  • H. M. YANG (a1), M. L. G. MACORIS (a2), K. C. GALVANI (a2), M. T. M. ANDRIGHETTI (a2) and D. M. V. WANDERLEY (a2)
  • DOI:
  • Published online: 04 February 2009

Dengue is a vector-borne disease transmitted by the mosquito Aedes aegypti. The incidence of dengue disease shows a clear dependence on seasonal variation. How does the temperature affect the incidence? We addressed this question indirectly by estimating the size of the A. aegypti population for different temperatures applying population dynamics theory. In order to achieve this objective we designed temperature-controlled experiments to assess the entomological parameters regarding the mosquito's life-cycle at different temperatures. By obtaining the mortality, transition and oviposition rates for different stages of the life-cycle of the mosquito we were able to calculate the basic offspring number Q0, which is the capacity of vector reproduction and ultimately gives the size of the vector population.

Corresponding author
*Author for correspondence: Prof. H. M. Yang, UNICAMP – IMECC, Departamento de Matemática Aplicada, Caixa Postal 6065, CEP 13083-859, Campinas, SP, Brazil. (Email:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

2. HM Yang , CP Ferreira . Assessing the effects of vector control on dengue transmission. Applied Mathematics and Computation 2008; 198: 401413.

3.LM Rueda , Temperature development and survival rates of Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Journal of Medical Entomology 1990; 27: 892898.

4. BW Alto , SA Juliano . Temperature effects on the dynamics of Aedes albopictus (Diptera: Culicidae) populations in the laboratory. Journal of Medical Entomology 2001; 38: 548556.

5.W Tun-Lin , TR Burkot , BH Kay . Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in North Queensland, Australia. Medical and Veterinary Entomology 2000; 14: 3137.

6.HM Yang , The serorevertion and the survival related to HIV infection among children: statistical modeling applied to retrospective data collection. Mathematical and Computer Modelling 2003; 38: 251267.

7.PM Frank . Introduction to System Sensitivity Theory. New York: Academic Press, 1978, pp. 385.

8.WH Press , Numerical Recipes: the Art of Scientific Computing (FORTRAN version), Cambridge: Cambridge University Press, 1989, pp. 702.

9. TJ Hastie , RJ Tibshirani . Generalized Additive Models (Monographs on Statistics and Applied Probability 43). London: Chapman & Hall, 1991, pp. 335.

11.CP Ferreira , HM Yang , L Esteva . Assessing the suitability of sterile insect technique applied to Aedes aegypti. Journal of Biological Systems 2008; 16: 565577.

12. DA Focks , Dynamic life table model for Aedes aegypti (Diptera:Culicidae): analysis of the literature and model development. Journal of Medical Entomology 1993; 30: 10031017.

12. DA Focks , Dynamic life table model for Aedes aegypti (Diptera:Culicidae): analysis of the literature and model development. Journal of Medical Entomology 1993; 30: 10031017.

14.A Kroeger , The potential for malaria control with the biological larvicide Bacillus thuringiensis israelensis (Bti) in Peru and Equador. Acta Tropica 1995; 60: 4757.

15.HM Yang , Assessing the effects of temperature on dengue transmission. Epidemiology and Infection 2009. doi:10.1017/S0950268809002052.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *