Skip to main content Accessibility help
×
Home

Capture–recapture analysis to estimate the incidence of invasive meningococcal disease in Germany, 2003

  • A. SCHRAUDER (a1) (a2), H. CLAUS (a1), J. ELIAS (a3), U. VOGEL (a3), W. HAAS (a1) and W. HELLENBRAND (a1)...

Summary

The incidence of invasive meningococcal disease (IMD) in Germany in 2003 was estimated by the two-source capture–recapture method. As a unique personal identifier was unavailable, cases with IMD tested at the National Reference Centre for Meningococci (NRZM) were matched with cases reported to the Robert Koch Institute (RKI) through the statutory surveillance system by using demographic and disease-specific variables common to both datasets. The estimated overall incidence was 1·1 IMD cases/100 000 inhabitants, with a sensitivity of ascertainment of 64·8% for NRZM and 89·4% for RKI. Case-fatality rate was estimated at 8·8%. Adjustment for heterogeneity of capture according to age, region and serogroup observed in the NRZM (but not RKI) source had minimal effect on the estimated incidence. The IMD incidence estimated by capture–recapture analysis is thus only slightly higher than through statutory surveillance data. As a degree of positive dependence between the systems cannot be ruled out, this estimate may still be an underestimate. However, under ascertainment appears insufficient to explain the low incidence of IMD in Germany compared to other European countries.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Capture–recapture analysis to estimate the incidence of invasive meningococcal disease in Germany, 2003
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Capture–recapture analysis to estimate the incidence of invasive meningococcal disease in Germany, 2003
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Capture–recapture analysis to estimate the incidence of invasive meningococcal disease in Germany, 2003
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: W. Hellenbrand, M.D. (CDN), M.P.H., Department of Infectious Disease Epidemiology, Robert Koch Institute, Seestrasse 10, 13353 Berlin, Germany. (Email: hellenbrandw@rki.de)

References

Hide All
1. Gjini, A, et al. . Capture–recapture analysis and pneumococcal meningitis estimates in England. Emerging Infectious Diseases 2004; 10: 8793.
2. Tocque, K, et al. . Capture recapture as a method of determining the completeness of tuberculosis notifications. Communicable Diseases and Public Health 2001; 4: 141143.
3. Faustini, A, et al. . Estimating incidence of bacterial meningitis with capture–recapture method, Lazio Region, Italy. European Journal of Epidemiology 2000; 16: 843848.
4. Breen, E, et al. . How complete and accurate is meningococcal disease notification? Communicable Diseases and Public Health 2004; 7: 334338.
5. Ackman, DM, Birkhead, G, Flynn, M. Assessment of surveillance for meningococcal disease in New York State, 1991. American Journal of Epidemiology 1996; 144: 7882.
6.International Working Group for Disease Monitoring and Forecasting. Capture–recapture and multiple-record systems estimation I: History and theoretical development. International Working Group for Disease Monitoring and Forecasting. American Journal of Epidemiology 1995; 142: 10471058.
7. Wittes, J, Sidel, VW. A generalization of the simple capture–recapture model with applications to epidemiological research. Journal of Chronic Diseases 1968; 21: 287301.
8. Stephen, C. Capture–recapture methods in epidemiological studies. Infection Control and Hospital Epidemiology 1996; 17: 262266.
9. Bernillon, P, et al. . Record-linkage between two anonymous databases for a capture–recapture estimation of underreporting of AIDS cases: France 1990–1993. The Clinical Epidemiology Group from Centres d'Information et de Soins de l'Immunodeficience Humaine. International Journal of Epidemiology 2000; 29: 168174.
10.EU-IBIS (European Union Invasive Bacterial Infections Surveillance Network). Invasive Neisseria Meningitidis in Europe – 2002. 2003 (http://www.euibis.org/documents/2002_meningo.pdf). Accessed 28 November 2005.
11.Robert Koch Institute. SurvStat@RKI (http://www3.rki.de/SurvStat). Accessed 5 May 2006.
12.Robert Koch Institute. Annual Reports on the Epidemiology of Notifiable Infectious Diseases in Germany, as of 2001 [in German] (http://www.rki.de>Infektionsschutz>Jahrbuch). Accessed 28 November 2005.
13.Robert Koch Institute. 2004 edition of case definitions for the surveillance of notifiable infectious diseases in Germany [in German] (http://www.rki.de>Infektionsschutz>Infektionsschutzgesetz>Falldefinitionen>nach IfSG). Accessed 28 November 2005.
14. Hook, EB, Regal, RR. Capture–recapture methods in epidemiology: methods and limitations. Epidemiologic Reviews 1995; 17: 243264.
15. Laporte, RE, et al. . Counting diabetes in the next millennium. Application of capture–recapture technology. Diabetes Care 1993; 16: 528534.
16. Wittes, JT, Colton, T, Sidel, VW. Capture–recapture methods for assessing the completeness of case ascertainment when using multiple information sources. Journal of Chronic Diseases 1974; 27: 2536.
17. Tilling, K. Capture–recapture method – useful or misleading? International Journal of Epidemiology 2001; 30: 1214.
18. Brenner, H. Use and limitations of the capture–recapture method in disease monitoring with two dependent sources. Epidemiology 1995; 6: 4248.
20. Hook, EB, Regal, RR. The value of capture–recapture methods even for apparent exhaustive surveys. The need for adjustment for source of ascertainment intersection in attempted complete prevalence studies. American Journal of Epidemiology 1992; 135: 10601067.
21. Sekar, CC, Deming, WE. On a method of estimating birth and death rates and the extent of registration. Journal of the American Statistical Association 1949; 44: 101115.
22.International Working Group for Disease Monitoring and Forecasting. Capture–recapture and multiple-record systems estimation II: Applications in human diseases. American Journal of Epidemiology 1995; 142: 10591068.
23.Robert Koch Institute. Invasive meningococcal disease in 2004 [in German]. Epidemiological Bulletin 2005; 34: 307313.
24. Hook, EB, Regal, RR. Effect of variation in probability of ascertainment by sources (‘variable catchability’) upon ‘capture–recapture’ estimates of prevalence. American Journal of Epidemiology 1993; 137: 11481166.
25. Jansson, A, Arneborn, M, Ekdahl, K. Sensitivity of the Swedish statutory surveillance system for communicable diseases 1998–2002 assessed by the capture–recapture method. Epidemiology and Infection 2005; 133: 401407.
26. Washington, JA. An international multicenter study of blood culture practices. The International Collaborative Blood Culture Study Group. European Journal of Clinical Microbiology and Infectious Diseases 1992; 11: 11151128.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed