Skip to main content
×
Home

Comparison of the transmission characteristics of low and high pathogenicity avian influenza A virus (H5N2)

  • J. A. VAN DER GOOT (a1), M. C. M. DE JONG (a2), G. KOCH (a1) and M. VAN BOVEN (a2)
Abstract

Low pathogenicity avian influenza A strains (LPAI) of the H5 and H7 type are noted for their ability to transform into highly pathogenic counterparts (HPAI). Here we compare the transmission characteristics in poultry of LPAI H5N2 (A/Chicken/Pennsylvania/83) and corresponding HPAI virus by means of transmission experiments. In the experiments, five inoculated animals are placed in a cage with five contact animals, and the infection chain is monitored by taking blood samples, and samples from the trachea and cloaca. The data are analysed by final size methods and a generalized linear model. The results show that HPAI virus is more infectious and induces a longer infectious period than LPAI. In fact, fully susceptible animals are invariably infected when confronted with HPAI virus and die within six days after infection. Animals previously infected with LPAI virus, on the other hand, survive an infection with HPAI virus or escape infection all together. This implies that a previous infection with LPAI virus effectively reduces susceptibility of the host to infection and decreases transmission of HPAI virus. We discuss the implications of these conclusions for the control and evolution of avian influenza viruses.

Copyright
Corresponding author
Author for correspondence.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 23 *
Loading metrics...

Abstract views

Total abstract views: 177 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 11th December 2017. This data will be updated every 24 hours.