Skip to main content Accessibility help
×
×
Home

Correlation between infectious disease and soil radiation in Japan: an exploratory study using national sentinel surveillance data

  • S. INAIDA (a1), T. TSUDA (a2) and S. MATSUNO (a3)

Summary

We investigated the relationship between epidemics and soil radiation through an exploratory study using sentinel surveillance data (individuals aged <20 years) during the last three epidemic seasons of influenza and norovirus in Japan. We used a spatial analysis method of a geographical information system (GIS). We mapped the epidemic spreading patterns from sentinel incidence rates. We calculated the average soil radiation [dm (μGy/h)] for each sentinel site using data on uranium, thorium, and potassium oxide in the soil and examined the incidence rate in units of 0·01 μGy/h. The correlations between the incidence rate and the average soil radiation were assessed. Epidemic clusters of influenza and norovirus infections were observed in areas with relatively high radiation exposure. A positive correlation was detected between the average incidence rate and radiation dose, at r = 0·61–0·84 (P < 0·01) for influenza infections and r = 0·61–0·72 (P < 0·01) for norovirus infections. An increase in the incidence rate was found between areas with radiation exposure of 0 < dm < 0·01 and 0·15 ⩽ dm < 0·16, at 1·80 [95% confidence interval (CI) 1·47–2·12] times higher for influenza infection and 2·07 (95% CI 1·53–2·61) times higher for norovirus infection. Our results suggest a potential association between decreased immunity and irradiation because of soil radiation. Further studies on immunity in these epidemic-prone areas are desirable.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Correlation between infectious disease and soil radiation in Japan: an exploratory study using national sentinel surveillance data
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Correlation between infectious disease and soil radiation in Japan: an exploratory study using national sentinel surveillance data
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Correlation between infectious disease and soil radiation in Japan: an exploratory study using national sentinel surveillance data
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: Dr S. Inaida, 2-5-1, Shikata-cho, Kita-ku, Okayama City, Okayama, Japan. (Email: inaida@med.niigata-u.ac.jp)

Footnotes

Hide All
The results of this study were presented at the 89th Annual Conference of the Japanese Association of Infectious Diseases (Kyoto, Japan, April 2015).

Footnotes

References

Hide All
1. Inaida, S, et al. Geographic trends and spread of the pandemic (H1N1) 2009 in the metropolitan areas of Japan studied from the national sentinel data. Japanese Journal of Infectious Diseases 2011; 64: 473481.
2. Inaida, S, et al. The south to north variation of norovirus epidemics from 2006–07 to 2008–09 in Japan. PLoS ONE 2013; 8: e71696.
3. Inaida, S, et al. The spatial diffusion of norovirus epidemics over three seasons in Tokyo. Epidemiology & Infection 2014; 143: 522528.
4. Shahid, S, et al. Mutations of the human interferon alpha-2b (hIFNα − 2b) gene in low-dose natural terrestrial ionizing radiation exposed dwellers. Cytokine 2015; 76: 294302.
5. Shahid, S, et al. Mutations of the human interferon alpha-2b (hIFN-α2b) gene in occupationally protracted low dose radiation exposed personnel. Cytokine 2015; 73: 181189.
6. Amagi, T, et al. Dysfunction of irradiated thymus for the development of helper T cells. Journal of Immunology 1987; 139: 358364.
7. Sajjadieh, MRS, et al. Affects of ionizing radiation on T-cell population lymphocyte: a risk factor of irritable bowel syndrome. Toxicology and Industrial Health 2010; 6: 323330.
8. Godekmerdan, A, et al. Diminished cellular and humoral immunity in workers occupationally exposed to low levels of ionizing radiation. Archives of Medical Research 2004; 35: 324328.
9. Sajjadieh, MRS, et al. Effect of ionizing radiation on development process of T-cell population lymphocytes in Chernobyl children. Iranian Journal of Radiation Research 2009; 7: 127133.
10. Stewart, AM, et al. Non-cancer effects of exposure to A-bomb radiation. Journal of Epidemiology & Community Health 1984; 38: 108112.
11. Stewart, AM. Delayed effects of A-bomb radiation: a review of recent mortality rates and risk estimates for five-year Survivors. Journal of Epidemiology & Community Health 1982; 36: 8086.
12. Stewart, AM, et al. A-bomb survivors: factors that may lead to a re-assessment of the radiation hazard. International Journal of Epidemiology 2000; 29: 708714.
13. Stewart, AM, et al. Radiation and marrow damage. British Medical Journal (Clinical Research Edition) 1982; 284: 1192.
14. Ohkita, T. Acute effects. Journal of Radiation Research: 1975; 16 (Suppl. 1): 4966.
15. Kusunoki, Y, et al. Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors. International Journal of Radiation Biology 2008; 84: 114.
16. Wuttke, K, et al. Radiation induced micronuclei in subpopulations of human lymphocytes. Mutation Research 1993; 2: 181188.
17. Bauman, A, et al. The impact of natural radioactivity from a coal-fired power plant. Science of the Total Environment 1981; 17: 7581.
18. Hagelstrom, AH, et al. Chromosomal damage in workers occupationally exposed to chronic low level ionizing radiation. Toxicology Letters 1995; 76: 113117.
19. Pohl-Rüling, J. Low level dose induced chromosome aberrations in human blood lymphocytes. Radiation Protection Dosimetry 2014; 159: 1019.
20. Gricienė, B, et al. Cytogenetic monitoring of nuclear workers occupationally exposed to ionising radiation. Radiation Protection Dosimetry 1992; 1–4: 623627.
21. Jahns, J, et al. Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells. Mutation Research 2011; 709–710: 3239.
22. McMahon, DM, et al. Effects of long-term low-level radiation exposure after the Chernobyl catastrophe on immunoglobulins in children residing in contaminated areas: prospective and cross-sectional studies. Environmental Health 2014; 000: 1336.
23. Oskouii, MR, et al. Assessment of humoral immunity in workers occupationally exposed to low levels of ionizing radiation. Life Science Journal 2013; 5s.
24. Daniak, N, et al. Hematologic consequences of exposure to ionizing radiation. Experimental Hematology 2002; 30: 513528.
25. Beck, HL, et al. In-situ Ge (Li) and NaI (Tl) gamma ray spectrometry. Health and Safety Laboratory AEC, Report HASL, 1972, pp. 258.
26. Infectious Agents Surveillance Report (IASR). Infectious Surveillance Centre, NIID, Japan (http://idsc.nih.go.jp/iasr/prompt/graph-ke.html).
27. Inaida, S, et al. Delayed norovirus epidemic in the 2009–2010 season in Japan: potential relationship with intensive hand sanitizer use for pandemic influenza. Epidemiology & Infection 2016; 12: 25612567.
28. Motomura, K, et al. Identification of monomorphic and divergent haplotypes in the 2006–2007 norovirus GII/4 epidemic population by genomewide tracing of evolutionary history. Journal of Virology 2008; 82: 1124711262.
29. Taniguchi, K, et al. Overview of infectious disease surveillance system in Japan, 1999–2005. Journal of Epidemiology 2007; 17 (Suppl: S3 –1).
30. Michael, R, et al. The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiotherapy Research International 1996; 1: 221228.
31. Ministry of Health, Labour and Welfare. Survey of medical institutions (http://www.mhlw.go.jp/english/database/db-hss/mi.html). Accessed 2 April 2015.
32. Geological Society of Japan. Radioactive elements in soil (2004) (https://gbank.gsj.jp/geochemmap/index_e.htm). Accessed 23 April 2014.
33. Minato, S. Distribution of terrestrial γ ray dose rates in Japan. Journal of Geography 2006; 1: 8795.
34. Watson, DF. Contouring: a Guide to the Analysis and Display of Spatial Data. Oxford: Elsevier, 1992, pp. 321.
35. Sarmah, K, et al. Land suitability analysis for identification of summer paddy cultivation sites based on multi criteria evaluation through GIS. European Academic Research 2015; 2: 1358413606.
36. Ujeno, Y. Carcinogenetic hazard from natural background radiation in Japan. The Journal of Radiation Research 1978; 19: 205212.
37. Land, CE. Estimating cancer risks from low doses of ionizing radiation. Science 1980; 209: 11971203.
38. Rossi, HH, et al. Radiation carcinogenesis at low doses. Science 1972; 175: 200202.
39. Brenner, DJ, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proceedings of the National Academy of Sciences USA 2003; 100: 1376113766.
40. Hodge, FA, et al. Susceptibility to infection with Pasteurella tularensis and the immune response of mice exposed to continuous low dose rate gamma radiation. Journal of Infectious Diseases 1969; 120: 356365.
41. Barcinski, MA, et al. Cytogenetic investigation in a Brazilian population living in an area of high natural radioactivity. American Journal of Human Genetics 1975; 27: 802806.
42. François, A, et al. Inflammation and immunity in radiation damage to the gut mucosa. BioMed Research International 2013; 123 241.
43. Somosy, Z, et al. Morphological aspects of ionizing radiation response of small intestine. Micron 2002; 33: 167178.
44. Coia, LR, et al. Late effects of radiation therapy on the gastrointestinal tract. International Journal of Radiation Oncology, Biology, Physics 1995; 31: 12131236.
45. Siebenga, JJ, et al. Epochal evolution of GGII.4 norovirus capsid proteins from 1995 to 2006. Journal of Virology 2007; 81: 99329941.
46. Reber, AJ, et al. Seasonal influenza vaccination of children induces humoral and cell-mediated immunity beyond the current season: cross-reactivity with past and future strains. Journal of Infectious Diseases 2016; 214: 14771486.
47. Gloag, D. Risks of low-level radiation – the evidence of epidemiology. British Medical Journal 1980; 281: 14791482.
48. Land, CE. Uncertainty, low-dose extrapolation and the threshold hypothesis. Journal of Radiological Protection 2002; 3A: A129135.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed