Skip to main content

Environmental sampling coupled with real-time PCR and genotyping to investigate the source of a Q fever outbreak in a work setting


A Q fever outbreak was declared in February 2016 in a company that manufactures hoists and chains and therefore with no apparent occupational-associated risk. Coxiella burnetii infection was diagnosed by serology in eight of the 29 workers of the company; seven of them had fever or flu-like signs and five had pneumonia, one requiring hospitalisation. A further case of C. burnetii pneumonia was diagnosed in a local resident. Real-time PCR (RTi–PCR) showed a widespread distribution of C. burnetii DNA in dust samples collected from the plant facilities, thus confirming the exposure of workers to the infection inside the factory. Epidemiological investigations identified a goat flock with high C. burnetii seroprevalence and active shedding which was owned and managed by one of the workers of the company as possible source of infection. Genotyping by multispacer sequence typing (MST) and a 10-loci single-nucleotide polymorphism (SNP) discrimination using RTi–PCR identified the same genotype (MST18 and SNP type 8, respectively) in the farm and the factory. These results confirmed the link between the goat farm and the outbreak and allowed the identification of the source of infection. The circumstances and possible vehicles for the bacteria entering the factory are discussed.

Corresponding author
*Author for correspondence: A. L. García-Pérez, Department of Animal Health, NEIKER – Instituto Vasco de Investigación y Desarrollo Agrario, Derio, Bizkaia, Spain. (Email:
Hide All
1. Angelakis, E, Raoult, D. Q fever. Veterinary Microbiology 2010; 140: 297309.
2. Astobiza, I, et al. Kinetics of Coxiella burnetii excretion in a commercial dairy sheep flock after treatment with oxytetracycline. The Veterinary Journal 2010; 184: 172175.
3. Guatteo, R, et al. Coxiella burnetii shedding by dairy cows. Veterinary Research 2007; 38: 849860.
4. Rodolakis, A, et al. Comparison of Coxiella burnetii shedding in milk of dairy bovine, caprine, and ovine herds. Journal of Dairy Science 2007; 90: 53525360.
5. Welsh, HH, et al. Q fever in California. IV. Occurrence of Coxiella burnetii in the placenta of naturally infected sheep. Public Health Reports 1951; 66: 14731477.
6. Porter, SR, et al. Q Fever: current state of knowledge and perspectives of research of a neglected zoonosis. International Journal of Microbiology 2011; 2011: 248418.
7. Tissot-Dupont, H, et al. Wind in November, Q fever in December. Emerging Infectious Diseases 2004; 10: 12641269.
8. Massung, RF, Cutler, SJ, Frangoulidis, D. Molecular typing of Coxiella burnetii (Q Fever). Advances in Experimental Medicine and Biology 2012; 984: 381396.
9. Anderson, AD, et al. Diagnosis and management of Q fever—United States, 2013: recommendations from CDC and the Q Fever Working Group. MMWR Recommendations and Reports 2013; 62: 130.
10. Denison, AM, Thompson, HA, Massung, RF. IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates. BMC Microbiology 2007; 7: 91.
11. Ruiz-Fons, F, et al. Seroepidemiological study of Q fever in domestic ruminants in semi-extensive grazing systems. BMC Veterinary Research 2010; 6: 3.
12. Astobiza, I, et al. Coxiella burnetii shedding and environmental contamination at lambing in two highly naturally-infected dairy sheep flocks after vaccination. Research in Veterinary Science 2011; 91: e58e63.
13. Schets, FM, de Heer, L, de Roda Husman, AM. Coxiella burnetii in sewage water at sewage water treatment plants in a Q fever epidemic area. International Journal of Hygiene and Environmental Health 2013; 216: 698702.
14. Ros-García, A, et al. Development and evaluation of a real-time PCR assay for the quantitative detection of Theileria annulata in cattle. Parasites & Vectors 2012; 5: 171.
15. Glazunova, O, et al. Coxiella burnetii genotyping. Emerging Infectious Diseases 2005; 11: 12111217.
16. Huijsmans, CJ, et al. Single-nucleotide-polymorphism genotyping of a Coxiella burnetii during a Q Fever outbreak in the Netherlands. Applied and Environmental Microbiology 2011; 77: 20512057.
17. Bond, KA, et al. One health approach to controlling a Q fever outbreak on an Australian goat farm. Epidemiology and Infection 2016; 144: 11291141.
18. EFSA. Scientific opinion on Q fever. The EFSA Journal 2010; 8: 1595.
19. Schneeberger, PM, et al. Real-time PCR with serum samples is indispensable for early diagnosis of acute Q fever. Clinical and Vaccine Immunology 2010; 17: 286290.
20. van den Brom, R, et al. Coxiella burnetii infections in sheep or goats: an opinionated review. Veterinary Microbiology 2015; 181: 119129.
21. Alonso, E, et al. Q Fever outbreak among workers at a waste-sorting plant. PLoS ONE 2015; 10: e0138817.
22. Arricau-Bouvery, N, et al. Molecular characterization of Coxiella burnetii isolates by infrequent restriction site-PCR and MLVA typing. BMC Microbiology 2006; 6: 38.
23. Hornstra, HM, et al. Rapid typing of Coxiella burnetii . PLoS ONE 2011; 6: e26201.
24. Pearson, T, et al. High prevalence and two dominant host-specific genotypes of Coxiella burnetii in U.S. milk. BMC Microbiology 2014; 14: 41.
25. Tilburg, JJ, et al. Epidemic genotype of Coxiella burnetii among goats, sheep, and humans in the Netherlands. Emerging Infectious Diseases 2012; 18: 887889.
26. Tilburg, JJ, et al. Evaluation of three different genotyping methods for the molecular characterization of C. burnetii. 6th International Meeting on Rickettsiae and Rickettsial Diseases 2011, Crete, Greece. Poster-133, p 84.
27. Astobiza, I, et al. Genotyping of Coxiella burnetii from domestic ruminants in northern Spain. BMC Veterinary Research 2012; 8: 241.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed