Skip to main content Accessibility help
×
×
Home

Estimation of the frequency of Q fever in sheep, goat and cattle herds in France: results of a 3-year study of the seroprevalence of Q fever and excretion level of Coxiella burnetii in abortive episodes

  • K. GACHE (a1), E. ROUSSET (a2), J. B. PERRIN (a3), R. DE CREMOUX (a4), S. HOSTEING (a5), E. JOURDAIN (a6), R. GUATTEO (a7), P. NICOLLET (a8), A. TOURATIER (a1), D. CALAVAS (a9) and C. SALA (a9)...

Summary

A study was carried out, from 2012 to 2015, in 10 French départements to estimate the serological prevalence of Q fever and the frequency of abortive episodes potentially related to Coxiella burnetii in a large sample of cattle, sheep and goat herds. The serological survey covered 731 cattle, 522 sheep and 349 goat herds, randomly sampled. The frequency of abortive episodes potentially related to C. burnetii was estimated by investigating series of abortions in 2695 cattle, 658 sheep and 105 goat herds using quantitative polymerase chain reaction analyses and complementary serological results when needed. The average between-herd seroprevalence was significantly lower for cattle (36·0%) than for sheep (55·7%) and goats (61·0%) and significantly higher for dairy herds (64·9% for cattle and 75·6% for sheep) than for meat herds (18·9% for cattle and 39·8% for sheep). Within-herd seroprevalence was also significantly higher for goats (41·5%) than for cattle (22·2%) and sheep (25·7%). During the study period, we estimated that 2·7% (n = 90), 6·2% (n = 48) and 16·7% (n = 19) of the abortive episodes investigated could be ‘potentially related to C. burnetii’in cattle, sheep and goat herds, respectively. Overall, strong variability was observed between départements and species, suggesting that risk factors such as herd density and farming practices play a role in disease transmission and maintenance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of the frequency of Q fever in sheep, goat and cattle herds in France: results of a 3-year study of the seroprevalence of Q fever and excretion level of Coxiella burnetii in abortive episodes
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of the frequency of Q fever in sheep, goat and cattle herds in France: results of a 3-year study of the seroprevalence of Q fever and excretion level of Coxiella burnetii in abortive episodes
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of the frequency of Q fever in sheep, goat and cattle herds in France: results of a 3-year study of the seroprevalence of Q fever and excretion level of Coxiella burnetii in abortive episodes
      Available formats
      ×

Copyright

Corresponding author

*Author for correspondence: K. Gache, GDS France, 149 rue de Bercy 75012, Paris, France. (Email: kristel.gache.fngds@reseaugds.com)

References

Hide All
1. Lang, GH. Coxiellosis (Q fever) in animals. In: Marrie, TJ, ed. Q FEVER: Volume 1 the Disease. Boca Raton, Florida, USA: CRC Press, Inc., 1990, pp. 2348.
2. EFSA. Scientific opinion on Q fever. EFSA J. 2010; 8: 15931709.
3. OIE. Q fever. In: OIE, ed. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2016 (http://www.oie.int/en/international-standard-setting/terrestrial-manual/access-online/). Accessed 12 Mai 2017.
4. Georgiev, M, et al. Q fever in humans and farm animals in four European countries, 1982 to 2010. Eurosurveillance 2013; 18: 1325.
5. Schneeberger, PM, et al. Q fever in the Netherlands – 2007–2010: what we learned from the largest outbreak ever. Médecine et Maladies Infectieuses 2014; 44: 339353.
6. Frankel, D, et al. Q fever in France, 1985–2009. Emerging Infectious Diseases 2011; 17: 350356.
7. Guatteo, R, et al. Prevalence of Coxiella burnetii infection in domestic ruminants: a critical review. Veterinary Microbiology 2011; 149: 116.
8. Bronner, A, et al. Quantitative and qualitative assessment of the bovine abortion surveillance system in France. Preventive Veterinary Medicine 2015; 120: 6269.
9. Perrin, J-B, et al. Absence of bovine brucellosis confirmed in 2014, but vigilance must be maintained. Bulletin épidémiologique, animal health and nutrition (http://bulletinepidemiologique.mag.anses.fr/sites/default/files/BEP-mg-BE71-eng-art2.pdf). Accessed 12 Mai 2017.
10. Ruiz-Fons, F, et al. Seroepidemiological study of Q fever in domestic ruminants in semi-extensive grazing systems. BMC Veterinary Research 2010; 6: 3.
11. Ryan, ED, et al. Prevalence of Coxiella burnetii (Q fever) antibodies in bovine serum and bulk-milk samples. Epidemiology and Infection 2011; 139: 14131417.
12. Guatteo, R, et al. Assessing the within-herd prevalence of Coxiella burnetii milk-shedder cows using a real-time PCR applied to bulk tank milk. Zoonoses and Public Health 2007; 54: 191194.
13. McCaughey, C, et al. Coxiella burnetii (Q fever) seroprevalence in cattle. Epidemiology and Infection 2010; 138: 2127.
14. Schimmer, B, et al. Seroprevalence and risk factors of Q fever in goats on commercial dairy goat farms in the Netherlands, 2009–2010. BMC Veterinary Research 2011; 7: 81.
15. Garcia-Perez, AL, et al. Investigation of Coxiella burnetii occurrence in dairy sheep flocks by bulk-tank milk analysis and antibody level determination. Journal of Dairy Science 2009; 92: 15811584.
16. van den Brom, R, et al. Demography of Q fever seroprevalence in sheep and goats in The Netherlands in 2008. Preventive Veterinary Medicine 2013; 109: 7682.
17. Rousset, E, et al. Adoption by a network's laboratories of a validated quantitative real-time PCR method for monitoring Q fever abortions in ruminant livestock. Euroreference 2012; 8: 2128.
18.Association de Certification de la Santé Animale, Proposition de plan de maîtrise de la fièvre Q dans les élevages cliniquement atteints, in Technical report. Paris, France; 2007.
19. Dubuc-Forfait, C, et al. Démarche d'appréciation du risque d'excrétion de Coxiella burnetii dans les troupeaux caprins laitieres dans le sud-est de la France. Epidémiologie et santé animale 2009; 55: 117136.
20. Anastacio, S, et al. Serological evidence of exposure to Coxiella burnetii in sheep and goats in central Portugal. Veterinary Microbiology 2013; 167: 500505.
21. Hilbert, A, et al. Prevalence of Coxiella burnetii in clinically healthy German sheep flocks. BMC Research Notes 2012; 5: 152.
22. Lambton, SL, et al. Serological survey using ELISA to determine the prevalence of Coxiella burnetii infection (Q fever) in sheep and goats in Great Britain. Epidemiology and Infection 2016; 144: 1924.
23. Magouras, I, et al. Coxiella burnetii infections in small ruminants and Humans in Switzerland. Transboundary and Emerging Diseases 2015; 64: 204212.
24. Ohlson, A, et al. Surveys on Coxiella burnetii infections in Swedish cattle, sheep, goats and moose. Acta Veterinaria Scandinavica 2014; 56: 39.
25. Bottcher, J, et al. Insights into the dynamics of endemic Coxiella burnetii infection in cattle by application of phase-specific ELISAs in an infected dairy herd. Veterinary Microbiology 2011; 151: 291300.
26. Taurel, AF, et al. Seroprevalence of Q fever in naturally infected dairy cattle herds. Preventive Veterinary Medicine 2011; 101: 5157.
27. van den Brom, R, et al. Coxiella burnetii in bulk tank milk samples from dairy goat and dairy sheep farms in The Netherlands in 2008. Veterinary Record 2012; 170: 310.
28. Agger, JF, et al. Prevalence of Coxiella burnetii antibodies in Danish dairy herds. Acta Veterinaria Scandinavica 2010; 52: 5.
29. Muskens, J, et al. Prevalence of Coxiella burnetii infection in Dutch dairy herds based on testing bulk tank milk and individual samples by PCR and ELISA. Veterinary Record 2011; 168: 79.
30. van Leuken, JPG, et al. Human Q fever incidence is associated to spatiotemporal environmental conditions. One Health 2016; 2: 7787.
31. Agerholm, JS. Coxiella burnetii associated reproductive disorders in domestic animals – a critical review. Acta Veterinaria Scandinavica 2013; 55: 13.
32. Bildfell, RJ, et al. Coxiella burnetii infection is associated with placentitis in cases of bovine abortion. Journal of Veterinary Diagnostic Investigation 2000; 12: 419425.
33. Jensen, TK, et al. Application of fluorescent in situ hybridisation for demonstration of Coxiella burnetii in placentas from ruminant abortions. APMI 2007; 115: 347353.
34. Muskens, J, et al. Prevalence of Coxiella burnetii infections in aborted fetuses and stillborn calves. Veterinary Record 2012; 170: 260.
35. Chanton-Greutmann, H, et al. Abortion in small ruminants in Switzerland: investigations during two lambing seasons (1996–1998) with special regard to chlamydial abortions. Schweizer Archiv fur Tierheilkunde 2002; 144: 483492.
36. Masala, G, et al. Detection of pathogens in ovine and caprine abortion samples from Sardinia, Italy, by PCR. Journal of Veterinary Diagnostic Investigation 2007; 19: 9698.
37. Moeller, RB. Causes of caprine abortion: diagnostic assessment of 211 cases (1991–1998). Journal of Veterinary Diagnostic Investigation 2001; 13: 265270.
38. van den Brom, R, et al. Coxiella burnetii infections in sheep or goats: an opinionated review. Veterinary Microbiology 2015; 181: 119129.
39. Hazlett, MJ, et al. A prospective study of sheep and goat abortion using real-time polymerase chain reaction and cut point estimation shows Coxiella burnetii and Chlamydophila abortus infection concurrently with other major pathogens. Journal of Veterinary Diagnostic Investigation 2013; 25: 359368.
40. Guatteo, R, Joly, A, Beaudeau, F. Shedding and serological patterns of dairy cows following abortions associated with Coxiella burnetii DNA detection. Veterinary Microbiology 2012; 155: 430433.
41. Arricau Bouvery, N, et al. Experimental Coxiella burnetii infection in pregnant goats: excretion routes. Veterinary Research 2003; 34: 423433.
42. Joulie, A, et al. Circulation of Coxiella burnetii in a naturally infected flock of dairy sheep: shedding dynamics, environmental contamination, and genotype diversity. Applied and Environmental Microbiology 2015; 81: 72537260.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed