Skip to main content
×
×
Home

Factors associated with fatal outcome of children with enterovirus A71 infection: a case series

  • S.D. Yang (a1), P.Q. Li (a2), Y.G. Huang (a3), W. Li (a4), L.Z. Ma (a5), L. Wu (a6), N. Wang (a7), J.M. Lu (a2), W.Q. Chen (a2), Guang-ming Liu (a2), Y.M. Xiong (a2), Y.L. Chen (a3) and Ying Zhang (a2)...
Abstract

Enterovirus A-71 (EV-A71) may be fatal, but the natural history, symptoms, and signs are poorly understood. This study aimed to examine the natural history of fatal EV-A71 infection and to identify the symptoms and signs of early warning of deterioration. This was a clinical observational study of fatal cases of EV-A71 infection treated at five Chinese hospitals between 1 January 2010 and 31 December 2012. We recorded and analysed 91 manifestations of EV-A71 infection in order to identify early prognosis indicators. There were 54 fatal cases. Median age was 21.5 months (Q1−Q3: 12–36). The median duration from onset to death was 78.5 h (range, 6 to 432). The multilayer perceptron analysis showed that ataxia respiratory, ultrahyperpyrexia, excessive tachycardia, refractory shock, absent pharyngeal reflex, irregular respiratory rhythm, hyperventilation, deep coma, pulmonary oedema and/or haemorrhage, excessive hypertension, tachycardia, somnolence, CRT extension, fatigue or sleepiness and age were associated with death. Autopsy findings (n = 2) showed neuronal necrosis, softening, perivascular cuffing, colloid and neuronophagia phenomenon in the brainstem. The fatal cases of enterovirus A71 had neurologic involvement, even at the early stage. Direct virus invasion through the neural pathway and subsequent brainstem damage might explain the rapid progression to death.

Copyright
Corresponding author
Author for correspondence: Sida Yang, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China. E-mail: yangsida2013@126.com
Footnotes
Hide All
*

These authors contributed equally to this work.

Footnotes
References
Hide All
1.Wang, SM, et al. (1999) Clinical spectrum of enterovirus 71 infection in children in southern Taiwan, with an emphasis on neurological complications. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 29, 184190.
2.Lin, TY, et al. (2002) The 1998 enterovirus 71 outbreak in Taiwan: pathogenesis and management. Clinical Infectious Diseases: an Official Publication of the Infectious Diseases Society of America 34(suppl. 2), S52S57.
3.Prager, P, et al. (2003) Neurogenic pulmonary edema in enterovirus 71 encephalitis is not uniformly fatal but causes severe morbidity in survivors. Pediatric Critical Care Medicine: a Journal of the Society of Critical Care Medicine and the World Federation of Pediatric Intensive and Critical Care Societies 4, 377381.
4.Weng, KF, et al. (2010) Neural pathogenesis of enterovirus 71 infection. Microbes and Infection/Institut Pasteur 12, 505510.
5.Xu, W, et al. (2012) Distribution of enteroviruses in hospitalized children with hand, foot and mouth disease and relationship between pathogens and nervous system complications. Virology Journal 9, 8.
6.Chang, LY, et al. (2007) Neurodevelopment and cognition in children after enterovirus 71 infection. The New England Journal of Medicine 356, 12261234.
7.Ho, M, et al. (1999) An epidemic of enterovirus 71 infection in Taiwan. Taiwan enterovirus epidemic working group. The New England Journal of Medicine 341, 929935.
8.Chen, KT, et al. (2007) Epidemiologic features of hand-foot-mouth disease and herpangina caused by enterovirus 71 in Taiwan, 1998–2005. Pediatrics 120, e244e252.
9.van der Sanden, S, et al. (2009) Epidemiology of enterovirus 71 in the Netherlands, 1963 to 2008. Journal of Clinical Microbiology 47, 28262833.
10.Bible, JM, et al. (2007) Genetic evolution of enterovirus 71: epidemiological and pathological implications. Reviews in Medical Virology 17, 371379.
11.McMinn, PC (2002) An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiology Reviews 26, 91107.
12.Shih, SR, et al. (2004) Identification of genes involved in the host response to enterovirus 71 infection. Journal of Neurovirology 10, 293304.
13.Lin, TY, Chu, C and Chiu, CH (2002) Lactoferrin inhibits enterovirus 71 infection of human embryonal rhabdomyosarcoma cells in vitro. Journal of Infectious Diseases 186, 11611164.
14.Xing, W, et al. (2014) Hand, foot, and mouth disease in China, 2008–12: an epidemiological study. The Lancet Infectious Diseases 14, 308318.
15.Shindarov, LM, et al. (1979) Epidemiological, clinical, and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71. Journal of Hygiene, Epidemiology, Microbiology, and Immunology 23, 284295.
16.Lum, LC, et al. (1998) Fatal enterovirus 71 encephalomyelitis. Journal of Pediatrics 133, 795798.
17.He, Y, et al. (2014) Tonsillar crypt epithelium is an important extra-central nervous system site for viral replication in EV71 encephalomyelitis. The American Journal of Pathology 184, 714720.
18.Yang, Y, et al. (2009) Molecular confirmation of enterovirus type 71 infection: a post-mortem study of two cases. Zhonghua bing li xue za zhi Chinese Journal of Pathology 38, 258262.
19.Jiang, M, et al. (2012) Autopsy findings in children with hand, foot, and mouth disease. The New England Journal of Medicine 367, 9192.
20.Huang, CC, et al. (1999) Neurologic complications in children with enterovirus 71 infection. The New England Journal of Medicine 341, 936942.
21.Komatsu, H, et al. (1999) Outbreak of severe neurologic involvement associated with enterovirus 71 infection. Pediatric Neurology 20, 1723.
22.Ng, DK, et al. (2001) First fatal case of enterovirus 71 infection in Hong Kong. Hong Kong Medical Journal = Xianggang yi xue za zhi/Hong Kong Academy of Medicine 7, 193196.
23.Fujimoto, T, et al. (2002) Outbreak of central nervous system disease associated with hand, foot, and mouth disease in Japan during the summer of 2000: detection and molecular epidemiology of enterovirus 71. Microbiology and Immunology 46, 621627.
24.Li, CC, et al. (2002) Clinical manifestations and laboratory assessment in an enterovirus 71 outbreak in southern Taiwan. Scandinavian Journal of Infectious Diseases 34, 104109.
25.Li, J, et al. (2012) MRI findings of neurological complications in hand-foot-mouth disease by enterovirus 71 infection. The International Journal of Neuroscience 122, 338344.
26.Lee, KY (2016) Enterovirus 71 infection and neurological complications. Korean Journal of Pediatrics 59, 395401.
27.YY, G, et al. (2010) Clinical features and critical illness risk factors of children with hand, food, mouth and disease of neurological involvement. Chinese Journal of Evidence Based Pediatrics 5(2), 135140.
28.Lin, HS, et al. (2009) Clinical analysis of 19 children with brainstem encephalitis associated with hand foot and mouth disease. Chinese Journal of Evidence Based Pediatrics 45(6), 520524.
29.Yang, SD, et al. (2009) Treatment experience of A critical infant with hand, foot and mouth disease. Chinese Journal of Evidence Based Pediatrics 3, 315317.
30.Piao, J, et al. (2012) Simultaneous detection and identification of enteric viruses by PCR-mass assay. PLoS ONE 7, e42251.
31.Yang, SD, et al. (2017) Clinical manifestations of severe enterovirus 71 infection and early assessment in a Southern China population. BMC Infectious Diseases 17, 153.
32.Meng, G, et al. (2015) Meteorological factors related to emergency admission of elderly stroke patients in shanghai: analysis with a multilayer perceptron neural network. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 21, 36003607.
33.Choi, JY and Choi, CH (1992) Sensitivity analysis of multilayer perceptron with differentiable activation functions. IEEE Transactions on Neural Networks 3, 101107.
34.Wei, X, et al. (2016) A neural network prediction of environmental determinants of anopheles sinensis knockdown resistance mutation to pyrethroids in China. Journal of Vector Ecology: Journal of the Society for Vector Ecology 41, 295302.
35.Haykin, S (1999) Neural Networks – A Comprehensive Foundation. Delhi: Pearson Education, Inc.
36.Gao, YY, Yang, SD and Tao, JP (2010) Clinical features and critical illness risk factors of children with hand, foot, mouth and disease of neurological involvement. Chinese Journal of Evidence Based Pediatrics 5, 135140.
37.Nagata, N, et al. (2002) Pyramidal and extrapyramidal involvement in experimental infection of cynomolgus monkeys with enterovirus 71. Journal of Medical Virology 67, 207216.
38.Nagata, N, et al. (2004) Differential localization of neurons susceptible to enterovirus 71 and poliovirus type 1 in the central nervous system of cynomolgus monkeys after intravenous inoculation. The Journal of General Virology 85, 29812989.
39.Yu, P, et al. (2014) Histopathological features and distribution of EV71 antigens and SCARB2 in human fatal cases and a mouse model of enterovirus 71 infection. Virus Research 189, 121132.
40.Lin, YW, et al. (2013) Human SCARB2 transgenic mice as an infectious animal model for enterovirus 71. PLoS ONE 8, e57591.
41.Yamayoshi, S, et al. (2012) Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. Journal of Virology 86, 56865696.
42.Yamayoshi, S and Koike, S (2011) Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. Journal of Virology 85, 49374946.
43.Yamayoshi, S, et al. (2013) Functional comparison of SCARB2 and PSGL1 as receptors for enterovirus 71. Journal of Virology 87, 33353347.
44.Li, PQ, et al. (2014) Death warning throught occurrence time of the symptoms and signs of enterovirus 71 infection in 54 death cases. Chinese Journal of Evidence Based Pediatrics 9, 338344.
45.Tan, SH, Ong, KC and Wong, KT (2014) Enterovirus 71 Can directly infect the brainstem via cranial nerves and infection Can Be ameliorated by passive immunization. Journal of Neuropathology and Experimental Neurology 73, 9991008.
46.Chen, CS, et al. (2007) Retrograde axonal transport: a major transmission route of enterovirus 71 in mice. Journal of Virology 81, 89969003.
47.Ong, KC and Wong, KT (2015) Understanding enterovirus 71 Neuropathogenesis and its impact on other neurotropic enteroviruses. Brain Pathology 25, 614624.
48.Wang, X, et al. (2012) A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71. Nature Structural & Molecular Biology 19, 424429.
49.Wong, KT, et al. (2008) The distribution of inflammation and virus in human enterovirus 71 encephalomyelitis suggests possible viral spread by neural pathways. Journal of Neuropathology and Experimental Neurology 67, 162169.
50.Shekhar, K, et al. (2005) Deaths in children during an outbreak of hand, foot and mouth disease in peninsular Malaysia--clinical and pathological characteristics. The Medical Journal of Malaysia 60, 297304.
51.Hsueh, C, et al. (2000) Acute encephalomyelitis during an outbreak of enterovirus type 71 infection in Taiwan: report of an autopsy case with pathologic, immunofluorescence, and molecular studies. Modern Pathology: an Official Journal of the United States and Canadian Academy of Pathology, Inc 13, 12001205.
52.Anon. Centers for Disease Control and Prevention (1998) Deaths among children during an outbreak of hand, foot, and mouth disease--Taiwan, republic of China, April-July 1998. MMWR Morbidity and Mortality Weekly Report 47, 629632.
53.Chang, LY, et al. (1999) Clinical features and risk factors of pulmonary oedema after enterovirus-71-related hand, foot, and mouth disease. Lancet 354, 16821686.
54.Chua, KB and Kasri, AR (2011) Hand foot and mouth disease due to enterovirus 71 in Malaysia. Virologica Sinica 26, 221228.
55.Haynes, RL, et al. (2006) Lipid peroxidation during human cerebral myelination. Journal of Neuropathology and Experimental Neurology 65, 894904.
56.Su, P, et al. (2008) Myelination progression in language-correlated regions in brain of normal children determined by quantitative MRI assessment. International Journal of Pediatric Otorhinolaryngology 72, 17511763.
57.Charlton, RA, et al. (2006) White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology 66, 217222.
58.Ryniewicz, B (1975) Conduction velocity in peripheral nerves in healthy and sick children. Neurologia i neurochirurgia polska 9, 701704.
59.Leipsic, DPFO (1901) Developmental (Myelogenetic) localisation of the cerebral cortex in the human subject. The Lancet 158, 10271030.
60.Dean, DC III, et al. (2014) Modeling healthy male white matter and myelin development: 3 through 60 months of age. NeuroImage 84, 742752.
61.Bartkowska-Sniatkowska, A, et al. (2014) Do we really know the pharmacodynamics of anaesthetics used in newborns, infants and children? A review of the experimental and clinical data on neurodegeneration. Anaesthesiology Intensive Therapy 46, 101108.
62.Lui, YL, et al. (2013) Characterisation of enterovirus 71 replication kinetics in human colorectal cell line, HT29. SpringerPlus 2, 267.
63.Chen, F, et al. (2008) In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. International Journal of Pharmaceutics 349, 226233.
64.Jiao, XY, et al. (2014) Distribution of EV71 receptors SCARB2 and PSGL-1 in human tissues. Virus Research 190, 4052.
65.Zhang, F, et al. (2014) Oral immunization with recombinant enterovirus 71 VP1 formulated with chitosan protects mice against lethal challenge. Virology Journal 11, 80.
66.Chen, YC, et al. (2004) A murine oral enterovirus 71 infection model with central nervous system involvement. The Journal of General Virology 85, 6977.
67.Chen, IC, et al. (2013) Subneutralizing antibodies to enterovirus 71 induce antibody-dependent enhancement of infection in newborn mice. Medical Microbiology and Immunology 202, 259265.
68.Herbert, C, et al. (2014) Supertaster, super reactive: oral sensitivity for bitter taste modulates emotional approach and avoidance behavior in the affective startle paradigm. Physiology & Behavior 135, 198207.
69.Henck, JW, Reindel, JF and Anderson, JA (2001) Growth and development in rats given recombinant human epidermal growth factor(1–48) as neonates. Toxicological Sciences: an Official Journal of the Society of Toxicology 62, 8091.
70.Lin, JY and Shih, SR (2014) Cell and tissue tropism of enterovirus 71 and other enteroviruses infections. Journal of Biomedical Science 21, 18.
71.Fujii, K, et al. (2013) Transgenic mouse model for the study of enterovirus 71 Neuropathogenesis. Proceedings of the National Academy of Sciences of the United States of America 110, 1475314758.
72.Liang, CC, et al. (2004) Human endothelial cell activation and apoptosis induced by enterovirus 71 infection. Journal of Medical Virology 74, 597603.
73.Yamayoshi, S, et al. (2009) Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nature Medicine 15, 798801.
74.Nishimura, Y and Shimizu, H (2009) Identification of P-selectin glycoprotein ligand-1 as one of the cellular receptors for enterovirus 71. Uirusu. Journal of Virology 59, 195203.
75.Wong, KT and KC, ON (2014) Infectious diseases and tropical disease pathology: SS16–1 understanding enterovirus 71 infection and Neuropathogenesis: perspective from human and animal model studies. Pathology 46(suppl. 2), S26.
76.Koike, S (2009) Identification of an enterovirus 71 receptor; SCARB2. Uirusu. Journal of Virology 59, 189194.
77.Lu, M, et al. (2009) Pathology of enterovirus 71 infection: an autopsy study of 5 cases. Zhonghua bing li xue za zhi -- Chinese Journal of Pathology 38, 8185.
78.Gluska, S, et al. (2014) Rabies virus hijacks and accelerates the p75NTR retrograde axonal transport machinery. PLoS Pathogens 10, e1004348.
79.WHO Regional Office for the Western Pacific (2011) A Guide to Clinical Management and Public Health Response for Hand. Foot and Mouth Disease (HFMD). Geneva, Switzerland: WHO Press.
80.Sedy, J, et al. (2012) The role of sympathetic nervous system in the development of neurogenic pulmonary edema in spinal cord-injured rats. Journal of Applied Physiology 112, 18.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Epidemiology & Infection
  • ISSN: 0950-2688
  • EISSN: 1469-4409
  • URL: /core/journals/epidemiology-and-infection
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Yang et al. supplementary material 1
Yang et al. supplementary material

 Word (113 KB)
113 KB
WORD
Supplementary materials

Yang et al. supplementary material 2
Yang et al. supplementary material

 Word (19 KB)
19 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed